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Deep Multiple Imputation

Contributions

e Multiple Imputation is a popular approach to
deal with missing data.

o Current Multiple Imputation technigues rely on
restrictive assumptions — either about a joint
distribution of data (e.g. AMELIA 1) or carefully
specified conditional probability distributions
(e.g. MICE) for each data column with missing
values.

o Is it possible to come up with an imputation
algorithm that is less restrictive in its
assumptions?

Mixture Density Network

» A Mixture Density Network (MDN) is a
combination of a deep neural network and a
mixture model first described by Bishop (1994).

e The setup of a MDN is like a standard neural
network, where the output layer is mapped to
a mixture of normal distributions with K > 1
kernels.

o For a sufficient number of kernels, a MDN can
model arbitrary conditional probability
distributions.
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e The output of the neural network is the
parameter vector z, which contains K x «
(where =2, a; =1), K x pand K x o (where all o,
are constrained to be > 0).
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Figure 1. Overview of a MDN by Bishop (1994)

o | draw on a conditional multiple imputation algorithm (see Kropko et al 2014, van Buuren 2012) and
modify it to make it work with MDNs.

e The setup of an MDN allows me to draw m times from the conditional probability distribution. One
completed run of the algorithm generates m multiply imputed data sets.

Experimental Setup

o Experiment 1 - Multivariate Normal Data: The full data set (with the columns Y, X, X5, X5 and X,) is
drawn from a multivariate normal distribution. The guantities of interest to recover are 5, and 5, in the

regression E(Y) = [y + 51X + B2Xo.

» Experiment 2 - Heteroscedastic Data: The DGP is given by Y; ~ N (u;, 07), with u; = 8y + 1 X1; and
0?7 = exp(yo +1X1;). A second variable X, is also included in the data set. Both X, and X, are drawn from

normal distributions. The quantities of interest to recover are 3, 51, 7o and ~;. They are calculated using
maximum likelihood heteroscedastic linear regression.

Experimental Results

o Experiment 1 shows that Deep Multiple Imputation performs as well as current Multiple Imputation
techniques on problems that current Multiple Imputation techniques can solve well.

o Experiment 2 shows that Deep Multiple Imputation performs better than current Multiple
Imputation techniques on problems that go beyond what current Multiple Imputation techniques

are capable of.

Experiment 1: Multivariate Normal Data, MAR Experiment 2: Heteroscedastic Data, MCAR
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Figure 2: Results of the Monte Carlo Experiments

o First application of Mixture Density Networks
for Multiple Imputation.

o Deep Multiple Imputation is less restrictive in
its assumptions than current Multiple
Imputation approaches.

o Deep Multiple Imputation decreases
Researcher Degrees of Freedom, e g.
Interactions do not need to be specified ahead
of the iImputation procedure.

Where to Go From Here?

e Show that it makes a difference on real world
problems.

» Extend the algorithm to take into account
different data types.

e Other distributions for the components (e.g.
Bernoulli).
* Time-series data.

o Implement it as an easy to use R-package.
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