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1 Introduction

With the increasing use of “machine learning” methods in political science new terminology is introduced to our

field. While most political methodologists extensively learned how to apply regression models, the application of

newly introduced “machine learning” methods and models is often harder. This can lead to serious problems. Even

more so, when one term – like cross-validation – can mean very di�erent things. We find four di�erent meanings

of cross-validation in applied political science work. We focus on cross-validation in the context of predictive

modeling, where cross-validation can be used to obtain an estimate of true error or as a procedure for model tuning.

Our goal with this work is to experimentally explore potential problems with the application of cross-validation and

to show how to avoid them. With a re-analysis of a recent paper (Muchlinski et al., 2016) we highlight that these

problems are not only of theoretical nature but can a�ect the reported results of applied work.

First, we survey political science articles in the leading journals of the discipline and identify di�erent meanings

of cross-validation in applied political science work. Second, we focus on problematic cross-validation in the

context of predictive modeling. Using a single cross-validation procedure to obtain an estimate of the true error

and for model tuning at the same time leads to serious misreporting of performance measures. We demonstrate

the severe consequences of this problem with a series of experiments. Third, we use the study by Muchlinski

et al. (2016) on the prediction of the onset of civil war to illustrate that problematic cross-validation can a�ect

applied work. They claim that their random forest model is more accurate than logistic regression models in the

prediction of civil war onsets, even when tested on out-of-sample data. However, our re-analysis shows that they

use a single cross-validation procedure for model tuning and estimation of the true error, and therefore report

inaccurate performance measures. When we apply cross-validation correctly the authors’ conclusions do not hold,

including the already prominently cited (see Cederman and Weidmann, 2017; Cranmer and Desmarais, 2017;

Colaresi and Mahmood, 2017) main conclusion that “Random Forests o�ers superior predictive power compared

to several forms of logistic regression in an important applied domain – the quantitative analysis of civil war”

(Muchlinski et al., 2016, 101). We encourage researchers in predictive modeling to be especially mindful when

applying cross-validation.
�Replication materials are available online as a dataverse repository (Neunhoe�er and Sternberg, 2018) https://doi.org/10.7910/DVN/Y9KMJW.

We thank Thomas Gschwend, Richard Traunmüller, Sean Carey, Sebastian Juhl, Verena Kunz, Guido Ropers, the participants of the CDSS
Political Science colloquium and two anonymous reviewers for their helpful comments. All remaining errors are our own. This work was
supported by the University of Mannheims Graduate School of Economic and Social Sciences funded by the German Research Foundation.
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2 Cross-Validating Cross-Validation in Political Science

Our survey of the literature suggests that the term cross-validation has four di�erent meanings in applied political

science work. We searched JSTOR for the term cross-validation in publications of three leading political science

journals since 2010. In total we found 42 articles with the term cross-validation.1 For a table with all 42 articles see

Online Appendix A available at the Political Analysis dataverse site.

First, the term cross-validation is sometimes – in seven articles – used to describe the process of validating new

measures or instruments, for instance in the context of survey research (e.g., Cantú, 2014). The other three meanings

of cross-validation all have to do with resampling as a statistical tool. Generally, cross-validation here means to

randomly divide the data set into several about equally sized folds (each fold will contain about N
K observations,

where K indicates the number of folds and can be anything between 2 and N the number of rows in the data set). A

statistical model is then K times trained on all but the k-th fold, where k runs from 1 to K . Using this logic, the

second meaning of cross-validation refers to its use as a robustness check of coe�cients e.g. in regression analysis.

In our survey of the literature this was the case in two articles (e.g. Engstrom, 2012).

Third, in the context of predictive models, the term cross-validation is used – in eleven articles – to describe a

procedure to obtain an estimate of true error. True error is a measure of how well a model can predict outcomes of

previously unseen data (see Efron and Hastie, 2016; Cranmer and Desmarais, 2017). An estimate of true error is

important in practice, as it allows one to check whether a model generalizes well to unseen data or just memorizes

the patterns in the training data (i.e. overfitting). Cross-validation can be used to approximate true error without

setting aside additional validation data. The model is trained according to the resampling scheme described above

and then the accuracy (or any other measure) is evaluated on the k-th fold (test fold) that was not part of the training.

This process is then repeated for all K folds and the average (across the K folds) accuracy (or the average of any

other measure) is reported. An example of using cross-validation to estimate true error from political science is

Caughey and Warshaw (2015).

Fourth, and most often – in 17 articles – cross-validation is used to describe a procedure for model tuning. A

model can be tuned, for example, by repeatedly testing di�erent (hyper-) parameter values and selecting the value

that had the lowest error on a test fold. Hainmueller and Hazlett (2014) for instance use cross-validation to find the

best regularization parameter � in a Kernel Regularized Least Squares model. Model tuning can take many forms,

including (hyper-) parameter tuning, feature selection or up-/down-sampling of imbalanced data prior to model

training.

1The search was conducted on April 25 2018. The three journals in our search are APSR, AJPS, and PA. Since the time period covered by
JSTOR is di�erent for each journal, we supplemented the JSTOR search with manual searches on the journal websites for the term cross-validation
in the period after the last result in JSTOR and before April 25 2018.
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3 Experimental Exploration of Problematic Cross-Validation

A problematic use of cross-validation occurs when a single cross-validation procedure is used for model tuning

and to estimate true error at the same time (Cawley and Talbot, 2010; Hastie et al., 2011; Efron and Hastie, 2016).

Ignoring this can lead to serious misreporting of performance measures. If the goal of cross-validation is to obtain

an estimate of true error, every step involved in training the model (including (hyper-) parameter tuning, feature

selection or up-/down-sampling) has to be performed on each of the training folds of the cross-validation procedure.

Hastie et al. (2011, 245) refer to this problem as the wrong way of doing cross-validation. We take down-sampling

of imbalanced data as a simple example of this problem. Down-sampling the data set, e.g. to balance the dependent

variable, prior to the cross-validation procedure implies that the fold that is used for testing in each iteration of the

cross-validation procedure is also balanced (like the training set). It is straightforward that errors calculated on

these test folds cannot serve as an estimate of true error, where the data will always be imbalanced. The right way

of combining down-sampling of imbalanced data with cross-validation would be to first split the entire data set into

the k folds and then only down-sample the folds that are used for training. The test fold should remain imbalanced

to reflect the imbalance in unseen data. It is even more problematic if researchers apply cross-validation for model

tuning and report the performance of, for example, the best model on the training set – the so called apparent error,

while believing they are reporting some cross-validated error. This apparent error should not be used as an estimate

of true error as it most likely dramatically overestimates the performance of a model.

To demonstrate the severe consequences of the problematic use of cross-validation, we conduct six experiments.

We set up a data set with 2, 000 observations of a binary outcome Y with p(yi = 1) = 0.05 and a set of 90

uncorrelated predictor variables X . We randomly split the data into 1, 500 observations in the training set and

500 observations in the test set. The true error of any classifier on this data set can be expressed by the following

performance measures. The true F1 score is 0.05, the true ROC � AUC score is 0.5 and the true PR � AUC is

0.05. See Online Appendix B.1 for definitions of these three performance measures. The replication code and data

are available online as a dataverse repository (Neunhoe�er and Sternberg, 2018).

The results of our experiments are reported in the top panel of Figure 1. The true scores are indicated by the

horizontal lines. We first train a random forest model2 without model tuning3 on the training data and report its

performance on the test set (Procedure 1). Unsurprisingly, the performance measures for this procedure are close

to the true performance measures.

Second, we train a random forest model with 10 � f old cross-validation – we apply stratified cross-validation

such that the distribution of 0 and 1 is similar across all folds – and average the scores across the 10 folds to obtain

an estimate of the true error (Procedure 2). Again we can observe that the performance scores of Procedure 2 are

close to the true scores. This shows that cross-validation correctly applied provides a close approximation of true

2We use a random forest model for consistency with the application to Muchlinski et al. (2016). Our results generalize to other statistical
models.

3For random forest models we could tune two parameters, the number of predictors randomly sampled at each split (m) and the number of
trees (ntree). We set m to the default of bp(p)c = 9 with p = 90 being the number of predictors and the number of trees to 1, 000.
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error. Third, we combine down-sampling and cross-validation correctly as described above (Procedure 3). This

means we first split the entire data set into 10 folds, and then only down-sample the folds used for training while not

touching the test folds. When applied correctly, the error obtained from this procedure is, as expected, close to true

error.

Fourth, we combine cross-validation and down-sampling wrongly. This means we first down-sample the data

set prior to the cross-validation, resulting in balanced training and test folds (Procedure 4). Relying on the results

of such a procedure results in a severe misreporting of model performance, as all performance scores are higher

than the measures of true error. Fifth, we combine down-sampling and parameter tuning in a single cross-validation

and report the apparent error scores of the best model (Procedure 5). We set up this procedure for comparison with

the application in Section 4. This, of course, is even more problematic. Reporting the results of Procedure 5 leads

to substantial misreporting of predictive performance. However, using a procedure similar to Procedure 5 need not

be problematic if one uses independent test data to estimate true error. In Procedure 6 we apply the model from

Procedure 5 to out-of-sample data and see that the performance measures are close to the true error.

To summarize, to obtain reliable estimates of the true error researchers can either rely on out-of-sample

prediction (Procedure 1 and Procedure 6) or correctly apply cross-validation as in Procedures 2 and 3. Relying on

the performance scores from Procedure 4 or Procedure 5 and reporting them as estimates of the true error is wrong

and leads to substantial misreporting.
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Figure 1: Cross-Validation and Performance Measures. Top Panel: Experiment. Note that the lines for the true F1

score and the true PR � AUC score overlap. Lower Panel: Re-analysis of Muchlinski et al. (2016).
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4 Problematic Cross-Validation in Muchlinski et al. (2016)

Finally, we show that this problem is not only of theoretical nature, but can a�ect the inferences we draw from

results in applied work. Muchlinski et al. (2016) provide an example of misreported performance. They claim

that their random forest model o�ers an impressive predictive accuracy, even when being tested on independent

out-of-sample data.

We find that the performance measures reported in Muchlinski et al. (2016) dramatically overestimate the actual

performance of their model. Specifically, their analysis su�ers from a problematic use of cross-validation. In their

article, they report the apparent error scores of their best model (Procedure 5 above). Due to problems with the

out-of-sample data from Muchlinski et al. (2016) we split the data set into two parts for our re-analysis. One training

set with all observations from 1945 to 1989 and a test set with all observations from 1990 to 2000. Descriptive

statistics of the training and test set can be found in the Online Appendix C.1.

The results of our re-analysis can be found in the lower panel of Figure 1. We follow the same structure as in the

experiments and run the six procedures. For each of the procedures, we calculate the same performance measures

as before (F1
4, ROC-AUC5, PR-AUC).

In Procedure 5, we run the model described by Muchlinski et al. (2016) where they combine cross-validation

for model tuning, down-sampling, and then report the apparent error of the model on the training data. From our

experiments we expect that reporting performance from such a procedure will lead to serious misreporting of the

predictive performance. Indeed, wrongly reporting the values from procedure 5 like Muchlinski et al. (2016) would

lead to a reported PR-AUC value of 0.43, which drops to only 0.07 when the same model is used for out-of-sample

prediction (Procedure 6).

All of this would not be problematic if out-of-sample testing was performed in the analysis by Muchlinski

et al. (2016) to estimate the true error of the model (Procedure 6). While the authors claim to report the results of

applying their model to an independent out-of-sample test set, we find no evidence that they did so. They present

random numbers as predicted probabilities for civil war onset. In our re-analysis, we found that the data set used for

the out-of-sample predictions contains fewer variables than initially used to train the model. With this data set

it is, thus, not possible to obtain out-of-sample predictions. Our analysis of the replication code shows that they

randomly draw 737 probabilities from the in-sample predictions and merge them to out-of-sample observations of

civil war onset. The authors then compare those random probabilities with the true values of the out-of-sample-data.

The corresponding author was not able to provide additional data or code to clear this up. For a detailed explanation

of our re-analysis and the original code see our Online Appendix C.3.

In short, in our re-analysis we find no evidence for the impressive predictive performance of random forest

4Note that most of the F1 scores we calculated are substantially smaller than the F1 scores reported by Muchlinski et al. (2016, 97).
Unfortunately we could not find code or data to replicate Figure 3 in the original paper. However, since Muchlinski et al. (2016, 96) note that
"[a]ll logistic regression models fail to specify any civil war onset in the out-of-sample data," the F1 scores should be close to 0.

5Note that Muchlinski et al. (2016, 94) state that “ROC graphs are especially useful for applications where data are class imbalanced”, while
Cranmer and Desmarais (2017, 152) state and show the opposite.
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as reported in Muchlinski et al. (2016). Given their misunderstanding of cross-validation and based on a wrong

out-of-sample prediction it is neither correct to conclude that “Random Forests correctly predicts nine of twenty

civil war onsets in this out-of-sample data” (Muchlinski et al., 2016, 96) nor that “Random Forests o�ers superior

predictive power compared to several forms of logistic regression in an important applied domain – the quantitative

analysis of civil war” (Muchlinski et al., 2016, 101).

5 Discussion

We show that the term cross-validation has di�erent meanings in applied political science work. We focus on

cross-validation in the context of predictive models and experimentally show that misunderstanding cross-validation

can have severe consequences on the results of applied work. Particularly, problematic cross-validation undermines

the main conclusions drawn by the authors of a recent article by Muchlinski et al. (2016). In our re-analysis we

show that this approach o�ers no substantial improvement in predicting civil wars. We encourage researchers in

predictive modeling to be especially mindful when applying cross-validation.

Finally, we want to stress that by just reading the paper by Muchlinski et al. (2016) it is really hard to identify

the problems. It was only when we read the paper and the replication code side by side that the problems with the

analysis and results became apparent. With that in mind we asked ourselves: How can reviewers assess the quality

of the results without access to (some form) of the replication code? Answering this question will become more

important as new “machine learning” methods are more and more part of research projects in political methodology.
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Abstract

The introduction of new “machine learning” methods and terminology to political

science complicates the interpretation of results. Even more so, when one term –

like cross-validation – can mean very different things. We find different meanings

of cross-validation in applied political science work. In the context of predictive

modeling, cross-validation can be used to obtain an estimate of true error or as a

procedure for model tuning. Using a single cross-validation procedure to obtain an

estimate of the true error and for model tuning at the same time leads to serious

misreporting of performance measures. We demonstrate the severe consequences of

this problem with a series of experiments. We also observe this problematic usage

of cross-validation in applied research. We look at Muchlinski et al. (2016) on the

prediction of civil war onsets to illustrate how the problematic cross-validation can

affect applied work. Applying cross-validation correctly, we are unable to reproduce

their findings. We encourage researchers in predictive modeling to be especially

mindful when applying cross-validation.
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A Cross-Validating Cross-Validation in Political Sci-

ence

The following table summarizes the results of our survey of the literature.

Author(s) Journal

Cross-Validation for Validating New Measures/Instruments

Weber (2011) American Journal of Political Science

Ghitza and Gelman (2013) American Journal of Political Science

Cantú (2014) American Journal of Political Science

Besley and Reynal-Querol (2014) American Political Science Review

König et al. (2013) Political Analysis

Atkeson et al. (2014) Political Analysis

Guess (2015) Political Analysis

Cross-Validation as a Robustness Check

Engstrom (2012) American Journal of Political Science

Bisbee and Larson (2017) American Political Science Review

Cross-Validation to Estimate True Error

Ahlquist and Wibbels (2012) American Journal of Political Science

Grimmer et al. (2012) American Political Science Review

Hill and Jones (2014) American Political Science Review

Fariss (2014) American Political Science Review

Montgomery et al. (2012) Political Analysis

Grimmer and Stewart (2013) Political Analysis

Caughey and Warshaw (2015) Political Analysis

Montgomery et al. (2015) Political Analysis

Wilkerson et al. (2015) American Journal of Political Science

Cranmer and Desmarais (2017) Political Analysis
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Peterson and Spirling (2018) Political Analysis

Cross-Validation for Model Tuning

Hopkins and King (2010) American Journal of Political Science

Boas and Hidalgo (2011) American Journal of Political Science

Desmarais et al. (2015) American Journal of Political Science

Abadie et al. (2015) American Journal of Political Science

Lauderdale and Clark (2012) American Political Science Review

Keele (2010) Political Analysis

Carter and Signorino (2010) Political Analysis

Imai and Strauss (2011) Political Analysis

Glynn and Quinn (2011) Political Analysis

Caughey and Sekhon (2011) Political Analysis

Esarey and Pierce (2012) Political Analysis

Keele and Minozzi (2013) Political Analysis

Hainmueller and Hazlett (2014) Political Analysis

Keele and Titiunik (2015) Political Analysis

Montgomery et al. (2015) Political Analysis

Xu (2016) Political Analysis

Cranmer and Desmarais (2017) Political Analysis

Other or no use of Cross-Validation

Greenhill et al. (2011) American Journal of Political Science

Rainey (2014) American Journal of Political Science

Jessee (2016) American Journal of Political Science

Beauchamp (2017) American Journal of Political Science

Desmarais and Harden (2012) Political Analysis

Iacus et al. (2012) Political Analysis

Bowers et al. (2013) Political Analysis
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Our survey of the literature suggests that the term cross-validation has four different

meanings in applied political science work. We searched JSTOR for the term cross-

validation in publications of three leading political science journals since 2010. In total

we found 42 articles with the term cross-validation. The search was conducted on April

25 2018. The three journals in our search are APSR, AJPS, and PA. Since the time period

covered by JSTOR is different for each journal, we supplemented the JSTOR search with

manual searches on the journal websites for the term cross-validation in the period after

the last result in JSTOR and before April 25 2018.

In our search, we included all occurrences which mentioned the term “cross-validation”.

This also includes instances where the term cross-validation was only referred to in the

references, or briefly mentioned in the body of a paper. When the usage of the term cross-

validation could not be assigned to either of the first four categories (cross-validation

for validating new measures/instruments, cross-validation as a robustness check, cross-

validation to estimate true error, or cross-validation for model tuning), we assigned it to

the category “Other or no use of cross-validation”. There are 42 unique articles where the

term “cross-validation” occurs at least once. Note that two papers can be found in two

categories (Montgomery et al., 2015; Cranmer and Desmarais, 2017), so that the table

includes 42+ 2 = 44 references. This is because in these two papers, the authors use and

discuss cross-validation for both the estimation of true error and model tuning.
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B Experimental Exploration of Problematic

Cross-Validation

B.1 Three common performance measures

Generally, the results of a binary classifier (and any other classifier) can be summarized

by a confusion matrix. In the case of binary classification this is a 2⇥ 2 table of the four

possible classification outcomes of a model. The three performance measures – F1 score,

ROC-AUC and PR-AUC – can all be explained with the help of confusion matrices. To

get class predictions from predicted probabilities of belonging to the positive class one has

to set a threshold for positive prediction. Usually, the default value of this threshold for

positive prediction is 0.5. However, any other value between 0 and 1 could be a sensible

threshold for positive prediction.

Confusion Matrix

Observed
Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

• F1 score: The F1 score is the harmonic mean of precision and recall at some

threshold of positive prediction. In our experiment and application we set this

threshold to 0.5. In terms of the confusion matrix, the F1 score can be expressed

as: F1 =
2·TP

2·TP+FN+FP

• ROC-AUC score: ROC-AUC stands for the area under the receiver operating

characteristic curve. The receiver operating characteristic (ROC) curve is a plot of

the true positive rate (TPR, a.k.a Recall or Sensitivity) against the false positve rate

(FPR, a.k.a probability of false alarm) for confusion matrices of various thresholds.

Where TPR = TP
TP+FN (true positives divided by the sum of all observed positives)

and FPR = FP
FP+TN (false positives divided by the sum of observed negatives).

6



Plotting the two for various thresholds against each other yields the ROC curve. The

area under the curve can than be calculated by taking the integral: ROC-AUC =
R �1
1 TPR(T )FPR0(T )dT where T is the threshold parameter. A perfect classifier

has a ROC �AUC value of 1 and a random uninformative classifier has a ROC �

AUC value of 0.5. We calculate the ROC � AUC values using the roc function

from the R package pROC (Robin et al., 2011).

• PR-AUC score: PR-AUC stands for the area under the precision recall curve. The

precision recall (PR) curve is a plot of the precision against the recall (a.k.a. TPR

see above) for confusion matrices of various threshold. Where Precision = TP
TP+FP

(the ratio of correctly classified positives and all predicted positives) and Recall =

TPR = TP
TP+FN . Plotting the two for various thresholds against each other yields the

PR curve. Again taking the integral PR-AUC =
R �1
1 Precision(T )Recall0(T )dT . A

perfect classifier will have a PR-AUC value of 1, the PR-AUC value of an uninfor-

mative classifier will depend on the class balance (ratio of observed Positives and

observed Negatives in the data). In our experiment the true PR-AUC is 0.05. Note

that since PR-AUC does not consider true negatives it is not affected by class im-

balances (see Cranmer and Desmarais, 2017). We calculate the PR� AUC values

using the aucPRp function from the Replication Code provided by Cranmer and

Desmarais (2016).
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B.2 Code for the Experiment

################################################################

# Install and load Packages needed to run

################################################################

p_needed <- c("randomForest", "caret","ROCR", "pROC",

"stepPlr", "doMC", "separationplot", "logistf")

packages <- rownames(installed.packages())

p_to_install <- p_needed[!(p_needed %in% packages)]

if (length(p_to_install) > 0) {

install.packages(p_to_install)

}

print(sapply(p_needed, require, character.only = TRUE))

registerDoMC(cores = detectCores()-1)

source("AUC_PR.R")

confMat <- function(threshold = 0.5, pred, obs){

if(class(obs)=="factor") obs <- as.numeric(obs)-1

uMat <- matrix(threshold,length(obs),length(threshold),byrow=T)

preds <- c(pred)-uMat > 0

TP <- t(obs)%*%preds

FP <- t(1-obs)%*%preds

TN <- t(1-obs)%*%(1-preds)

FN <- t(obs)%*%(1-preds)

cmMat <- cbind(c(TP),c(FP),c(TN),c(FN))

colnames(cmMat) <- c("tp","fp","tn","fn")

cmMat <- data.frame(cmMat)

#

return(cmMat)

}

################################################################

# Experiments

################################################################

set.seed(20180503)

# prob1 indicates the distribution of 1s in the dependent variable

prob1 <- 0.05

# Generate uncorrelated experiment data

y <- rbinom(2000, 1, prob1)

x <- list(NULL)

for(i in 1:90){

x[[i]] <- rnorm(2000)

}
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X <- do.call(cbind, x)

df <- data.frame(y, X)

df$y <- as.factor(y)

levels(df$y) <- c("Negative", "Positive")

# Split into training and test data

sel <- sample(nrow(df), floor(0.25* nrow(df)))

test_data <- df[sel,]

training_data <- df[-sel,]

# Create folds for 10-fold cross-validation

nrFolds <- 10

# We use stratified cross-validation (to have similar distributions of 1s and 0s)

folds <- rep(NA, nrow(training_data))

folds[training_data[,1]=="Negative"] <-

rep_len(1:nrFolds,

sum(training_data[,1]=="Negative"))[sample(sum(training_data[,1]=="Negative"),

sum(training_data[,1]=="Negative"))]

folds[training_data[,1]=="Positive"] <-

rep_len(1:nrFolds,

sum(training_data[,1]=="Positive"))[sample(sum(training_data[,1]=="Positive"),

sum(training_data[,1]=="Positive"))]

####################

# Section 3 Experiments

####################

# Experiment 1

res <- NULL

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

rf1 <- randomForest(y~., data = training_data, ntree = 1000)

predictions <- predict(rf1, newdata = test_data, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_data$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_data$y, predictions[,2])$auc)
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ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_data[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res <- rbind(res, data.frame(Model = "Procedure 1",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Experiment 2

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# actual cross validation

for(k in 1:nrFolds) {

# actual split of the data

fold <- which(folds == k)

cv_training <- training_data[-fold,]

cv_test <- training_data[fold,]

rf_cv <- randomForest(y~., data = cv_training, ntree = 1000)

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res <- rbind(res, data.frame(Model = "Procedure 2",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Experiment 3 - CV and down-sampling correctly done

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# actual cross validation

for(k in 1:nrFolds) {

# actual split of the data

fold <- which(folds == k)
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cv_training <- training_data[-fold,]

cv_test <- training_data[fold,]

rf_cv <- randomForest(y~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training$y=="Positive"),

sum(cv_training$y=="Positive")))

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res <- rbind(res, data.frame(Model = "Procedure 3",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Experiment 4 - CV and down-sampling wrongly done

# Downsample data prior to cross-validation

sel1 <- sample(nrow(training_data[training_data$y=="Positive",]),

sum(training_data$y=="Positive"))

sel0 <- sample(nrow(training_data[training_data$y=="Negative",]),

sum(training_data$y=="Positive"))

ds_training_data <- rbind(training_data[training_data$y=="Positive",][sel1,],

training_data[training_data$y=="Negative",][sel0,])

# Stratified cross-validation folds for down-sampled data

ds_folds <- rep(NA, nrow(ds_training_data))

ds_folds[ds_training_data[,1]=="Negative"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="Negative"))[sample(sum(ds_training_data[,1]=="Negative"),

sum(ds_training_data[,1]=="Negative"))]

ds_folds[ds_training_data[,1]=="Positive"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="Positive"))[sample(sum(ds_training_data[,1]=="Positive"),

sum(ds_training_data[,1]=="Positive"))]

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# actual cross validation

for(k in 1:nrFolds) {
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# actual split of the data

fold <- which(ds_folds == k)

cv_training <- ds_training_data[-fold,]

cv_test <- ds_training_data[fold,]

rf_cv <- randomForest(y~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training$y=="Positive"),

sum(cv_training$y=="Positive")))

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res <- rbind(res, data.frame(Model = "Procedure 4",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Procedure 5 weird MSHK apparent error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

tc <- trainControl(method="cv",

number=10,#creates CV folds - 10 for this data

summaryFunction=twoClassSummary, # provides ROC summary stats in call to model

classProb=T)

caret_rf <- train(y~.,

metric = "ROC", method = "rf",

ntree = 1000,

sampsize=c(sum(cv_training$y=="Positive"),

sum(cv_training$y=="Positive")),

trControl = tc, data = training_data)

predictions <- predict(caret_rf, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = training_data$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(training_data$y, predictions[,2])$auc)
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ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(training_data[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res <- rbind(res, data.frame(Model = "Procedure 5",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Procedure 6 weird MSHK oos error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

predictions <- predict(caret_rf, test_data, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_data$y)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_data$y, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_data[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res <- rbind(res, data.frame(Model = "Procedure 6",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

######

# Section 4 Re-analysis of MSHK

######

set.seed(20180503)

setwd("~/Dropbox/4_PhD/4_PhD_Papers/pa-letter-civil-war/Revision 1/Misc/code/mn/experiment")

data <- read.csv(file = "SambnisImp.csv")

df <- data[,c("warstds", "ager", "agexp", "anoc", "army85", "autch98", "auto4",

"autonomy", "avgnabo", "centpol3", "coldwar", "decade1", "decade2",

"decade3", "decade4", "dem", "dem4", "demch98", "dlang", "drel",

"durable", "ef", "ef2", "ehet", "elfo", "elfo2", "etdo4590",

"expgdp", "exrec", "fedpol3", "fuelexp", "gdpgrowth", "geo1", "geo2",

"geo34", "geo57", "geo69", "geo8", "illiteracy", "incumb", "infant",

"inst", "inst3", "life", "lmtnest", "ln_gdpen", "lpopns", "major",

"manuexp", "milper", "mirps0", "mirps1", "mirps2", "mirps3", "nat_war", "ncontig",
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"nmgdp", "nmdp4_alt", "numlang", "nwstate", "oil", "p4mchg",

"parcomp", "parreg", "part", "partfree", "plural", "plurrel",

"pol4", "pol4m", "pol4sq", "polch98", "polcomp", "popdense",

"presi", "pri", "proxregc", "ptime", "reg", "regd4_alt", "relfrac",

"seceduc","second", "semipol3", "sip2", "sxpnew", "sxpsq",

"tnatwar", "trade", "warhist", "xconst")]

# Converting DV into Factor with names for Caret Library

df$warstds<-factor(

df$warstds,

levels=c(0,1),

labels=c("peace", "war"))

training_df <- df[data$year < 1990,]

test_df <- df[data$year >= 1990,]

# Create folds for 10-fold cross-validation

nrFolds <- 10

# We use stratified cross-validation (to have similar distributions of 1s and 0s)

folds <- rep(NA, nrow(training_df))

folds[training_df[,1]=="peace"] <-

rep_len(1:nrFolds,

sum(training_df[,1]=="peace"))[sample(sum(training_df[,1]=="peace"),

sum(training_df[,1]=="peace"))]

folds[training_df[,1]=="war"] <-

rep_len(1:nrFolds,

sum(training_df[,1]=="war"))[sample(sum(training_df[,1]=="war"),

sum(training_df[,1]=="war"))]

# Procedure 1

res_re <- NULL

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

rf1 <- randomForest(warstds~., data = training_df, ntree = 1000)

rf1

predictions <- predict(rf1, newdata = test_df, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_df$warstds)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_df$warstds, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)
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tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_df[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res_re <- rbind(res_re, data.frame(Model = "Procedure 1",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Procedure 2

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# actual cross validation

for(k in 1:nrFolds) {

# actual split of the data

fold <- which(folds == k)

cv_training <- training_df[-fold,]

cv_test <- training_df[fold,]

rf_cv <- randomForest(warstds~., data = cv_training, ntree = 1000)

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test$warstds)

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test$warstds, predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res_re <- rbind(res_re, data.frame(Model = "Procedure 2",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Experiment 3 - CV and down-sampling correctly done

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# actual cross validation

for(k in 1:nrFolds) {

# actual split of the data

fold <- which(folds == k)

cv_training <- training_df[-fold,]

cv_test <- training_df[fold,]
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rf_cv <- randomForest(warstds~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training[,1]=="war"),

sum(cv_training[,1]=="war")))

predictions <- predict(rf_cv, newdata = cv_test, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res_re <- rbind(res_re, data.frame(Model = "Procedure 3",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Experiment 4 - CV and down-sampling wrongly done

# Downsample data prior to cross-validation

sel1 <- sample(nrow(training_df[training_df[,1]=="war",]),

sum(training_df[,1]=="war"))

sel0 <- sample(nrow(training_df[training_df[,1]=="peace",]),

sum(training_df[,1]=="war"))

ds_training_data <- rbind(training_df[training_df[,1]=="war",][sel1,],

training_df[training_df[,1]=="peace",][sel0,])

# Stratified cross-validation folds for down-sampled data

ds_folds <- rep(NA, nrow(ds_training_data))

ds_folds[ds_training_data[,1]=="peace"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="peace"))[sample(sum(ds_training_data[,1]=="peace"),

sum(ds_training_data[,1]=="peace"))]

ds_folds[ds_training_data[,1]=="war"] <- rep_len(1:nrFolds,

sum(ds_training_data[,1]=="war"))[sample(sum(ds_training_data[,1]=="war"),

sum(ds_training_data[,1]=="war"))]

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# actual cross validation

for(k in 1:nrFolds) {

# actual split of the data

fold <- which(ds_folds == k)
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cv_training <- ds_training_data[-fold,]

cv_test <- ds_training_data[fold,]

rf_cv <- randomForest(warstds~., data = cv_training, ntree = 1000,

sampsize = c(sum(cv_training[,1]=="war"),

sum(cv_training[,1]=="war")))

predictions <- predict(rf_cv, newdata = cv_test ,type = "prob")

confusion <- confMat(pred = predictions[,2], obs = cv_test[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(cv_test[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(cv_test[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

}

res_re <- rbind(res_re, data.frame(Model = "Procedure 4",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Procedure 5 weird MSHK apparent error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

# Original Code by MSHK just changing data.full to training_df

tc <- trainControl(method="cv",

number=10,#creates CV folds - 10 for this data

summaryFunction=twoClassSummary, # provides ROC summary stats in call to model

classProb=T)

model.rf<-train(as.factor(warstds)~.,

metric="ROC", method="rf",

sampsize=c(floor(0.0043*sum(training_df[,1]=="peace")),

floor(0.78*sum(training_df[,1]=="war"))), #Downsampling the class-imbalanced DV

importance=T, # Variable importance measures retained

proximity=F, ntree=1000, # number of trees grown

trControl=tc, data=training_df)

predictions <- predict(model.rf, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = training_df[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)
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tmp_ROCAUC <- as.numeric(roc(training_df[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(training_df[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res_re <- rbind(res_re, data.frame(Model = "Procedure 5",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))

# Procedure 6 weird MSHK oos error

F1 <- NULL

ROCAUC <- NULL

PRAUC <-NULL

predictions <- predict(model.rf, test_df, type = "prob")

confusion <- confMat(pred = predictions[,2], obs = test_df[,1])

tmp_F1 <- 2*confusion$tp / (2*confusion$tp + confusion$fn + confusion$fp)

F1 <- c(F1, tmp_F1)

tmp_ROCAUC <- as.numeric(roc(test_df[,1], predictions[,2])$auc)

ROCAUC <- c(ROCAUC, tmp_ROCAUC)

tmp_PRAUC <- aucPRp(predictions[,2], (as.numeric(test_df[,1])-1))

PRAUC <- c(PRAUC, tmp_PRAUC)

res_re <- rbind(res_re, data.frame(Model = "Procedure 6",

F1 = mean(F1, na.rm = T),

ROC_AUC = mean(ROCAUC, na.rm = T),

PR_AUC = mean(PRAUC)))
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C Problematic Cross-Validation in Muchlinski et al.

(2016)

C.1 Description of data set used in Muchlinski et al. (2016)

Muchlinski et al. (2016) use a data set that is based on the data set provided by Hegre and

Sambanis (2006). The dependent variable civil war onset is a binary measure of whether

a civil war onset occurred for a given country in a given year1. The data set includes

7, 140 observations and a rich set of variables (while the original data set contains more

variables, Muchlinski et al. (2016) use 90 of them).

C.2 Re-analysis of Muchlinski et al. (2016)

For our re-analysis, we split the data set into two parts. The training set contains all

observations from 1945 to 1989, and the test data set all observations from 1990 to 2000.

This is a natural split into training and test set for time series data. The training set

contains 5, 299 observations, with 88 civil war onsets (0.017% civil war onsets). The test

data set contains 1841 observations, with 28 civil war onsets (0.015% civil war onsets).

We mirror the experimental strategy used in section three of the paper, using the same

six procedures as before. For each of the procedures, we calculate the same performance

measures as before (F1 score, ROC-AUC, PR-AUC).

• Procedure 1: For Procedure 1, we train a default random forest (with mtry set to

9 and the number of trees to 1, 000) without parameter tuning on the training set

and report the performance on the test set.
1
In the replication dataset (Muchlinski, 2015) provided by Muchlinski et al. (2016) the ratio of 1s

(civil war onsets) and 0s (peace) is about 1:100. This class imbalance complicates the prediction.
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• Procedure 2: For Procedure 2, we train a default random forest model without

parameter tuning on the training set, but this time using 10-fold cross-validation.

We then use the average across all 10 test folds to obtain the true error.

• Procedure 3: for Procedure 3, we combine 10-fold cross-validation and down-

sampling correctly. This means we first split the entire data set into 10 folds,

and then only down-sample the folds used for training while not touching the test

folds.

• Procedure 4: for Procedure 4, we combine 10-fold cross-validation and down-

sampling wrongly. This means we first down-sample the data set prior to the

cross-validation, resulting in balanced training and test folds

• Procedure 5: for Procedure 5, we follow the exact modeling procedure of Muchlinski

et al. (2016). This is, we combine down-sampling and parameter tuning in a single

cross-validation and report the apparent error scores of the best model. The best

model means the model with the mtry value with the smallest cross-validation error

(in the case of Muchlinski et al. (2016), the model with mtry = 2 gives the minimal

cross-validation error). This model was then used to predict the outcomes of the

training data, which results in reporting the apparent error.

• Procedure 6: for Procedure 6, we use the model from procedure 5 and use it for

an out-of-sample prediction on the test set. Because out-of-sample prediction gives

a close approximation of the true error, we observe that the model performance in

terms of PR-AUC drops from 0.43 in procedure 5 to only 0.07 in Procedure 6.

In Muchlinski et al. (2016), the authors report a ROC-AUC of 0.91 (page 96 in the

original paper) obtained by the exact same procedure as outlined in Procedure 5 above.

This means they train a random forest model with 10-fold cross-validation on the complete

data set, where they use cross-validation to tune the value of mtry. The model with the

best tuning parameter (i.e. the value of mtry that gives the minimum error across all
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folds of the cross-validation procedure) is then used to predict the same data set that was

used in the training process.
library(caret)

set.seed(666) #the most metal seed for CV

#This method of data slicing - or CV - will be used for all logit models - uncorrected and corrected

tc<-trainControl(method="cv",

number=10,#creates CV folds - 10 for this data

summaryFunction=twoClassSummary, # provides ROC summary stats in call to model

classProb=T)

###Implementing RF (with CV) on entirety of data###

model.rf<-train(as.factor(warstds)~.,

metric="ROC", method="rf",

sampsize=c(30,90), #Downsampling the class-imbalanced DV

importance=T, # Variable importance measures retained

proximity=F, ntree=1000, # number of trees grown

trControl=tc, data=data.full)

model.rf$finalModel

library(ROCR)

attach(data.full) #have to attach the data to get probs for some reason

RF.1.pred<-predict(model.rf, data.full$warstds, type="prob")

pred.RF.1<-prediction(RF.1.pred$war, data$warstds)

perf.RF.1<-performance(pred.RF.1, "tpr", "fpr")

plot(perf.RF.1, add=T, lty=4)

They train the random forest model2 with the R package caret (from Jed Wing et al.,

2017). In the trainControl function they specify that 10-fold cross-validation should

be applied. By default caret uses cross-validation in combination with random forests

to tune the mtry parameter. In the call of the train function they furthermore down-

sample their data. To get their ROC-AUC value they then call predict on the caret

object model.rf . They do not specify a new data set. caret by default predicts (i.e.

when no new data is specified) predicted probabilities for the training data3, thus this

can only be used to get the apparent error of a model.

Muchlinski et al. (2016), thus, report the apparent error of their model as expressed by
2
Note that this is a different random forest model than the one they use for “out-of-sample prediction”

below.

3
This behavior of predict.caret is very different of the default behavior predict.randomForest ,

see below.
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their ROC-AUC score, although they claim to report “cross-validated” scores (see footnote

7 in the original paper).

In short, Muchlinski et al. (2016) first train and optimize their model on the CWD, and

then use the optimized model to predict the same data. This results in a serious misreport

of model performance, because the random forest model actually just memorizes the

pattern in the training data (a.k.a. overfitting).

C.3 Reporting random probabilities as out-of-sample predictions

Muchlinski et al. (2016) report that they trained their random forest model on a data

set with observations from 19452000, and then updated this data set for all countries

in Africa and the Middle East for the years 2001-2014, giving them 737 out-of-sample

observations. Muchlinski et al. (2016) conclude that their random forest model correctly

predicts nine out of twenty civil war onsets in their new out-of-sample data. This conclu-

sion is prominently cited (see Cederman and Weidmann, 2017; Cranmer and Desmarais,

2017; Colaresi and Mahmood, 2017). They further report a table (Table 1 page 98 in the

original article) with the predicted probabilities of civil war onsets in the out-of-sample

data set.

However, we are unable to replicate these results. First, the data set used for the out-of-

sample predictions (i.e. 2001-2014) contains fewer variables than the training data. With

this data set it is, thus, not possible to obtain out-of-sample predictions. Second, our

analysis of the replication code shows that Muchlinski et al. (2016) randomly draw 737

probabilities from the in-sample predictions and merge them to out-of-sample observa-

tions of civil war onset. The authors then compare those random probabilities with the

true values of the out-of-sample-data. The corresponding author was not able to provide

additional data or code to clear this up. In the following, we elaborate on these two

points, and show the original replication code provided by Muchlinski (2015).
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C.3.1 Incomplete out-of-sample data

We only could identify the main dependent variable ( warstds ), one ID variable ( year ,

but no country ID variable), and eight predictors. These predictors do not have names

of variables which were used in the training. Strict out-of-sample prediction is thus not

possible with the provided data set.

C.3.2 Reporting random probabilities

The following code is the original code of the replication materials in the data verse. All

comments in the code are the original comments as in Muchlinski (2015).

Here, Muchlinski et al. (2016) train the random forest model on the whole CWD ( data.full )

from 1945-2000. They use down-sampling ( sampsize =c(30, 90) , the default mtry pa-

rameter
p
90 = 9 and run 1000 trees. The object RF.out contains the trained model.

###Running Random Forest without CV to get OOB Error Rate -

results not shown in paper###

RF.out<-randomForest(as.factor(warstds)~., sampsize=c(30, 90),

importance=T, proximity=F, ntree=1000, confusion=T, err.rate=T, data=data.full)

Then, they use this model (object RF.out ) to get out-of-bag predictions on the training

data, that is, use the random forest to predict the probability of civil war onset for all

observations in the training data.
yhat.rf<-predict(RF.out, type="prob") #taken from RF on whole data

###We used original CW data for training data here for all models/algorithms###

Yhat.rf<-as.data.frame(yhat.rf[,2])

By default of predict.randomForest , these are out-of-bag predictions on the training

data, since in the predict command, no new data is specified. Therefore, this returns

7, 140 (the number of observations in the training data) predictions. The object Yhat.rf

contains the predicted probabilities of a civil war onset (the second column of the object

yhat.rf ) for the training data.
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Muchlinski et al. (2016) now take a random sample of 737 values (the number of obser-

vations in the out-of-sample data) from the predicted probabilities of the in-sample data

(from the Yhat.rf object). The corresponding comment in the code does not help to clar-

ify why this is done: Selecting random samples to make pred and actual lengths equal

###Selecting random samples to make pred and actual lengths equal###

set.seed(100)

predictors.rf<-Yhat.rf[sample(nrow(Yhat.rf), 737),]

In the next step, Muchlinski et al. (2016) then compare those random predicted prob-

abilities with the true values of the out-of-sample-data, and obtain a confusion matrix

providing the primary evidence for their conclusion. This confusion matrix compares

true outcomes from out-of-sample observations with predicted probabilities for random

in-sample observations.
library(SDMTools)

confusion.matrix(data3$warstds, predictors.rf, threshold=.5)

To sum up, in our re-analysis we find no evidence for the impressive predictive perfor-

mance of random forest as reported in Muchlinski et al. (2016). Given their misunder-

standing of cross-validation and based on a wrong out-of-sample prediction it is neither

correct to conclude that “Random Forests correctly predicts nine of twenty civil war on-

sets in this out-of-sample data” (Muchlinski et al., 2016, 96) nor that “Random Forests

offers superior predictive power compared to several forms of logistic regression in an

important applied domain – the quantitative analysis of civil war” (Muchlinski et al.,

2016, 101).
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