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Abstract

Hyperparameters critically influence how well machine learning models perform on

unseen, out-of-sample data. Systematically comparing the performance of different hyperpa-

rameter settings will often go a long way in building confidence about a model’s performance.

However, analyzing 64 machine learning related manuscripts published in three leading

political science journals (APSR, PA, and PSRM) between 2016 and 2021, we find that only

13 publications (20.31%) report the hyperparameters and also how they tuned them in either

the paper or the appendix. We illustrate the dangers of cursory attention to model and tuning

transparency in comparing machine learning models’ capability to predict electoral violence

from tweets. The tuning of hyperparameters and their documentation should become a

standard component of robustness checks for machine learning models.



1 Why Care about Hyperparameters?

When political scientists work with machine learning models, they want to find a model

that generalizes well from training data to new, unseen data.1 Hyperparameters play a key role

in this endeavor because they determine the models’ capacity to generalize. Finding a good

set of hyperparameters critically affects conclusions about a model’s performance. The failure

to correctly tune and report hyperparameters has recently been identified as a key impediment

to the accumulation of knowledge in computer science (e.g. Bouthillier, Laurent and Vincent,

2019; Bouthillier et al., 2021; Cooper et al., 2021; Gundersen, Coakley and Kirkpatrick, 2022;

Henderson et al., 2018; Melis, Dyer and Blunsom, 2018). Is political science making the same

mistake?

We examined 64 machine learning-related papers published between 1 January 2016

and 20 October 2021 in some of the top journals of our discipline—the American Political

Science Review (APSR), Political Analysis (PA), and Political Science Research and Methods

(PSRM). Of the 64 publications we analyzed, 36 (56.25%) do not report the values of their

hyperparameters, neither in the paper nor the appendix. Forty-nine publications (76.56%) do not

share information about how they used tuning to find the values of their hyperparameters. Only

13 publications (20.31%) offer a complete account of the hyperparameters and their tuning. Not

being transparent is a dangerous habit because readers and reviewers cannot assess the quality of

a manuscript without access to the replication code.

With this paper, therefore, we raise the awareness that hyperparameters and their tuning

matter. In statistical inference, the goal is to estimate the value of an unknowable population

parameter. Including robustness checks in a paper and its appendix is good practice, allowing

others to understand critical choices in research design and statistical modeling. The actual

out-of-sample performance of a machine learning model is such an unknown quantity, too. We

suggest handling estimates of population parameters and hyperparameters in machine learning

models with the same loving care.

First, we explain what hyperparameters are and why they are essential. Second, we show

1A machine learning algorithm is “a computer program [that is] said to learn from experience 𝐸 with respect to
some class of tasks 𝑇 and performance measure 𝑃, if its performance at tasks in 𝑇 , as measured by 𝑃, improves
with experience 𝐸 .” (Mitchell, 1997)
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why it is dangerous not to be transparent about hyperparameters. Third, we offer best practice

advice about properly selecting hyperparameters. Finally, we illustrate our points by comparing

the performance of several machine learning models to predict electoral violence from tweets

(Muchlinski et al., 2021).

2 What Are Hyperparameters and Why Do They Need to Be

Tuned?

Many machine learning models have parameters and also hyperparameters. Model

parameters are learned during training, and hyperparameters are typically set before training.

Hyperparameters determine how and what a model can learn and how well the model will

perform on out-of-sample data. Hyperparameters are thus situated at a meta-level above the

models themselves.

Consider the following stylized example displayed in Figure 1.2 A linear regression

approach could model the relationship between 𝑋 and 𝑌 as 𝑌 = 𝛽0 + 𝛽1𝑋 . A more flexible model

would include additional polynomials in 𝑋 . For example, choosing 𝜆 = 2 encodes the theoretical

belief that 𝑌 is best predicted by a quadratic function of 𝑋 , i.e., 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋
2. But it is

also possible to rely on data only to find the optimal value of 𝜆. Measuring the generalization

error with a metric like the mean squared error helps empirically select the most promising value

of 𝜆.

This polynomial regression comes with both parameters and hyperparameters. Parameters

are variables that belong to the model itself, in our example, the regression equation coefficients.

Hyperparameters are those variables that help specify the exact model. In the context of the

polynomial regression, 𝜆 is the hyperparameter that determines how many parameters will be

learned (Goodfellow, Bengio and Courville, 2016). Machine learning models can, of course,

come with many more hyperparameters that relate not only to the exact parameterization of the

machine learning model. Anything part of the function that maps the data to a performance

measure and that can be set to different values can be considered a hyperparameter, e.g., the

2See also Goodfellow, Bengio and Courville (2016); Shalev-Shwartz and Ben-David (2014).

2



Figure 1: Example with polynomial regression. Data 𝑋 ∼ 𝑁 (0, 1). Data generating process: 𝑌 =

1+𝑋 +0.8𝑋2+0.3𝑋3+𝜖 , with 𝜖 ∼ 𝑁 (0, 2). Regression Line for Bivariate OLS Model in Blue. Regression
Curve for Polynomial Regression with 𝜆 = 3 in Teal.

choice and settings of a kernel in a support vector machine (SVM), the number of trees in a

random forest (RF), or the choice of a particular optimization algorithm.

3 Misselecting Hyperparameters

Research on machine learning has recently identified several problems that may arise from

handling hyperparameters without care. The failure to report the chosen hyperparameters impedes

scientific progress (Bouthillier, Laurent and Vincent, 2019; Bouthillier et al., 2021; Gundersen,

Coakley and Kirkpatrick, 2022; Henderson et al., 2018). In the face of a hyperparameter space

marked by the curse of dimensionality, other researchers can only replicate published work if

they know the hyperparameters used in the original study (Sculley et al., 2018). In addition,

it is essential to tune the hyperparameters of all models, including baseline models. Without

such tuning, it is impossible to compare the performance of two different models 𝑀𝑎 and 𝑀𝑏:

While some may find that the performance of 𝑀𝑎 is better than 𝑀𝑏, others replicating the

study with different hyperparameter settings could conclude the opposite: that indeed 𝑀𝑎 is not

better than that of 𝑀𝑏. Such “hyperparameter deception” (Cooper et al., 2021) has confused

scientific progress in various subfields in computer science where machine learning plays a key

role, including natural language processing (Melis, Dyer and Blunsom, 2018), computer vision
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(Musgrave, Belongie and Lim, 2020), and generative models (Lucic et al., 2018). Reviewers and

readers need to comprehend the hyperparameter tuning to assess whether a new model reliably

performs better or whether a study tests new hyperparameters (Cooper et al., 2021).

It is good to see political scientists also discuss and stress the relevance of hyperparameter

tuning in their work (e.g., Chang and Masterson, 2020; Cranmer and Desmarais, 2017; Fariss and

Jones, 2018; Miller, Linder and Mebane, 2020; Rheault and Cochrane, 2020; ?). But does the

broader political science community fulfill the requirements suggested in the computer science

literature? To understand how hyperparameters are used in the discipline, we searched for the

term “machine learning” in all papers published in APSR, PA, and PSRM after 1 January 2016

and before 20 October 2021. Suppose a paper applies a machine learning model with tunable

hyperparameters. In that case, we first annotate whether the authors report the final values of

hyperparameters for all models in their paper or its appendix.3 We also record whether authors

transparently describe how they tuned hyperparameters.4 Table 1 summarizes the findings

from our annotations. We find that 34 (53.12%) publications neither report the values of the

final hyperparameters nor the tuning regime in the publication or its appendix. Another 15

publications (23.44%) offer information about the final hyperparameter values but not how they

tuned the machine learning models. In two cases (3.12%), we find no information about the

final values of the hyperparameters but about the tuning regime. Finally, only 13 publications

(20.31%) offer a full account of both the final choice of the hyperparameters and the way the

tuning occurred in either the paper itself or its appendix.

Note that we annotated the literature in a way that helps understand whether reviewers and

readers can assess the robustness of the analyses based on the manuscript and its appendix. Our

analysis does not consider the replication code since it typically does not find consideration in

the review process. In addition, we do not make any judgments about correctness. A paper

without information about hyperparameter values or their tuning can still be correct. Similarly, a

paper that reports hyperparameter values and a complete account of the tuning can still be wrong.

It is the realm of reviewers to evaluate the quality of a manuscript. But without a complete

3We call this “model transparency”, i.e., could a reader understand the final models without access to the replication
code?

4We call this “tuning transparency”, i.e., could a reader understand the hyperparameter tuning without access to the
replication code? Please see A for more details about our annotations.
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Table 1: Can readers of a publication learn how hyperparameters were tuned and what hyperparameters
were ultimately chosen? Hyperparameter explanations in papers published in APSR, PA, and PSRM
between 1 January 2016 and 20 October 2021.

Tuning Transparency
No Yes

No 34 2Model Transparency Yes 15 13

account of hyperparameter values and tuning, readers and, in particular, reviewers cannot judge

whether hyperparameter tuning is technically sound.

4 Best Practice

Hyperparameters are a fundamental element of machine learning models. Documenting

their careful selection helps build trust in the insights gained from machine learning models.

4.1 Selecting Hyperparameters for Performance Tuning

Without automated procedures for finding hyperparameters, researchers need to rely on

heuristics (Probst, Boulesteix and Bischl, 2018). The classic approach to hyperparameter

optimization is to systematically try different hyperparameter settings and compare the models

using a performance measure. Machine learning splits the data into training, validation, and

test data (Friedman, Hastie and Tibshirani, 2001; Goodfellow, Bengio and Courville, 2016).

The model parameters are optimized using the training data. The validation data is used to

optimize the hyperparameters by estimating and then comparing an estimate of the performance

of all the different models. Finally, the test data helps approximate the performance of the best

model for out-of-sample data. Researchers should train a final machine learning model for a

realistic estimate of the model’s performance. This model relies upon the identified best set of

hyperparameters, uses a combined set of the training and validation data, and is evaluated on the

so far withheld test set. Note that this last evaluation can be done only once to avoid information

leakage. Tuning hyperparameters is therefore not a form of “p-hacking” (Gigerenzer, 2018;

Wasserstein and Lazar, 2016) where researchers try different models until they find the one that

generates the desired statistics. On the contrary, transparently testing different hyperparameter
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values is necessary to find a model that generalizes well.

In hyperparameter grid search, researchers manually define a grid of hyperparameter

values, then try each possible permutation and record the validation performance for each set

of hyperparameters. More recently, some instead suggest randomly sampling a large number

of hyperparameter candidate values from a pre-defined search space (Bergstra and Bengio,

2012) and recording the validation performance of each set of sampled hyperparameter values.5

This random search can help explore the space of hyperparameters more efficiently if some

hyperparameters are more important than others. Both approaches typically yield reliable and

good results for practitioners and build trust regarding the out-of-sample performance.

But the tuning of hyperparameters might be too involved for grid or random search in

light of resource constraints. It is then useful to not try all combinations of hyperparameters

but rather focus on the most promising ones.6 Sequential model-based Bayesian optimization

formalizes such a search for a new candidate set of hyperparameters (Shahriari et al., 2016;

Snoek, Larochelle and Adams, 2012). The core idea is to formulate a surrogate model—think

non-linear regression model—that predicts the machine learning model’s performance for a set

of hyperparameters. At iteration 𝑡, the underlying machine learning model is trained with the

surrogate model’s suggestion for the next best candidate set of hyperparameters. The results

from this training at 𝑡 are fed back into the surrogate model and used to refine the predictions for

the candidate set of hyperparameters in the next iteration 𝑡 + 1.7

Without a formal solution, the selection of hyperparameters requires human judgment. We

suggest relying on the following short heuristics when tuning and communicating hyperparame-

ters.8

1. Understanding the model. What are the available hyperparameters? How do they affect

the model?

5How many permutations from the search space should be tried depends on the search space size and the available
computational resources.

6For other promising strategies, see the thorough overviews in, e.g., Bischl et al. (2021); Hutter, Lücke and
Schmidt-Thieme (2015); Luo (2016); Probst, Boulesteix and Bischl (2018).

7Adaptive hyperparameter optimization is conveniently implemented in many software frameworks: for R see, e.g.,
mlr3 package on CRAN (Lang et al., 2019), for Python, e.g., scikit-optimize (Pedregosa et al., 2011) or keras
(Chollet et al., 2015).

8See also Bouthillier et al. (2021); Cooper et al. (2021); Sculley et al. (2018).
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2. Choosing a performance measure. What is a good performance for the machine learning

model? Depending on the respective task, appropriate measures help assess the model’s

success. For example, a regression model is trained to minimize the mean squared error.

Classification models can be trained to maximize the F1 score. With an appropriate

performance measure, it is also possible to systematically tune the hyperparameters of

unsupervised models (Fan et al., 2020).

3. Defining a sensible search space. Useful starting points for the hyperparameters can

be the default values in software libraries, recommendations from the literature, or own

previous experience (Probst, Boulesteix and Bischl, 2018). Any choice may also be

informed by considerations about the data-generating process. If the hyperparameters are

numerical, there may be a difference between mathematically possible and reasonable

values.

4. Finding the best combination in the search space. In grid search, researchers should try

every possible combination of the hyperparameters of the search space to find the optimal

combination. In random search, each run picks a different random set of hyperparameters

from the search space.

5. Tuning under strong resource constraints. If the model training is too involved, adaptive

approaches such as sequential model-based Bayesian optimization allow for efficiently

identifying and testing promising hyperparameter candidates.

Researchers should describe in either the main body or the appendix of their publication

how they tuned their hyperparameters and also what final values they chose. Only then can

reviewers and readers assess the robustness of machine learning models.

4.2 Illustration: Comparing Machine Learning Models to Predict Elec-

toral Violence from Tweets

To illustrate our point, we compare machine learning models trained to predict electoral

violence from tweets. Muchlinski et al. (2021) collected Tweets around elections in three

countries (Ghana, the Philippines, and Venezuela) and annotated whether these messages

described occurrences of electoral violence. We re-scraped the data based on the shared Tweet
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IDs. To predict these occurrences from the content of these Tweets, we use four different machine

learning models—a naive Bayes classifier (NB), random forest (RF), a support vector machine

(SVM), and a convolutional neural network (CNN).

Table 2 summarizes our results. In the left column of each country, we report the results

from training the models with default hyperparameters. On the right, we show the results after

hyperparameter tuning.9 Hyperparameter tuning improves the out-of-sample performance for

most machine learning models in our experiment.10 Table 2 also shows how easy it is to be

deceived about the relative performance of different models—if hyperparameters are not properly

tuned. The performance gains from tuning are so substantial that most tuned models outperform

any other model with default hyperparameters. In the case of Venezuela, for example, comparing

a tuned model with all other baseline models at their default hyperparameter settings could lead

to different conclusions. Researchers could mistakenly conclude that (a tuned) NB classifier

(F1=0.308) is better than any other method; or also that the RF is the better model (F1=0.479), or

the SVM (F1=0.465), or the CNN (F1=0.298). In short, model comparisons and model choices

are only meaningful if all hyperparameters of all models are systematically tuned and if this

tuning is transparently documented.

Table 2: Performance benchmarking of Muchlinski et al. (2021) on different classifiers using our scraped
data. On the left: results with default values for the hyperparameters. On the right: results from tuned
hyperparameters.

Default Tuned Default Tuned Default Tuned
Classifier F1 F1 F1 F1 F1 F1

Ghana The Philippines Venezuela
NB 0.000 0.538 0.000 0.390 0.000 0.308
RF 0.341 0.603 0.400 0.160 0.237 0.479
SVM 0.381 0.727 0.357 0.561 0.080 0.465
CNN 0.679 0.679 0.421 0.444 0.230 0.298

9In line with (Muchlinski et al., 2021), we chose the F1 score as the performance metric. We include details on the
tuned hyperparameters, the default values we chose, the search method, the search space for each model, and any
random seeds in the Appendix.

10In cases where hyperparameter tuning does not improve the performance over default hyperparameter values, the
default values are closer to the optimal solution than the best-performing hyperparameters from a cross-validation
procedure. However, the only way to find this out is through systematic hyperparameter tuning.
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5 Tuning Hyperparameters Matters

Hyperparameters critically influence how well machine learning models perform on unseen,

out-of-sample data. Despite the relevance of tuned hyperparameters, we found that only 20.31%

of the papers using machine learning models published in APSR, PA, and PSRM between 2016

and 2021 include information about the ultimate hyperparameter choice and how they were

found in the manuscript or the appendix. Furthermore, 34 papers (53.12%) neither report the

hyperparameters nor their tuning. This is a dangerous habit since handling hyperparameters

without care can lead to wrong conclusions about model performance and model choice.

The search for an optimal set of hyperparameters is a vibrant research area in computer

science and statistics. For most of the applications in our discipline, acknowledging and

discussing how the choice of hyperparameters could influence results in combination with a

proper and systematic search for appropriate hyperparameters would go a long way. It would

allow others to understand original work, assess its validity, and thus ultimately help build trust

in political science that uses machine learning.
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A Collection and Coding Instructions for Papers

We scrape google scholar looking for APSR, PA, and PSRM with the search string “machine
learning” in the full text of the papers after 1 January 2016 and before 20 October 2021, resulting
in 137 manuscripts. We then identify those publications that use machine learning models
according to our definition (Column Applies ML? in Table 3) For example, we exclude papers
where the only mention of machine learning is in the references, e.g., in the “Journal of Machine
Learning Research” or where the authors make a quick reference to machine learning approaches
but do not employ machine learning themselves. Left with 65 manuscripts, we then annotate
them with the following coding scheme.

• Tunable HPs?: Are there any tunable hyperparameters involved in the models which are
described in the paper or appendix? We discard one other manuscript here (Ratkovic and
Tingley, 2017).

• Model Transparency: Are the final hyperparameter values (of all models) in the paper or
appendix?

• Tuning Transparency: Are the hyperparameter search method (e.g., grid search) and search
space (range of tested values) described in the paper or appendix?

Please allow us some further remarks concerning the annotation. First, our annotation
is not a statement of the “correctness” of the approach. During the annotation process, we
set the values for model and/or tuning transparency to FALSE for papers referencing existing
work to justify their hyperparameter choice without mentioning the actual values. Furthermore,
we did not check whether the authors included values for all available hyperparameters of
an implementation. We assume that they use the proposed default values for the remaining
hyperparameters. Next, when multiple machine learning models were used, we assigned FALSE

to a category if one of these models failed to fulfill the requirements according to our coding
scheme. Like the weakest link in a chain, the scientific rigor will be affected by the weakest part
of its analysis. On several occasions, authors propose a new model, only to pitch it against a
baseline from machine learning models that use default settings or even manually set values.
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B Overview of Papers in Our Sample

Table 3 contains all 137 papers containing “machine learning” in the full text published in
PSRM, PA, and APSR between 1 January 2016 and 20 October 2021. We coded 65 of these
papers using machine learning models. These 65 papers are the basis of our analysis.

Table 3: Overview of all papers in our sample. We retrieved 137 papers, 65 of which applied machine
learning models according to our definition. We report our coding of model transparency and tuning
transparency. The symbol − indicates that our coding scheme was not applicable.

Political Science Research and Methods

Applies Tunable Model Tuning
Article ML? HPs? Transparency Transparency

Settle et al. (2016) ✗ - - -
Schutte (2017) ✗ - - -
Bagozzi and Berliner (2018) ✓ ✓ ✓ ✓

Fariss and Jones (2018) ✗ - - -
Wu (2018) ✗ - - -
Hopkins and Pettingill (2018) ✗ - - -
Munger et al. (2019) ✓ ✓ ✓ ✓

Hollenbach, Montgomery and Crespo-Tenorio
(2019)

✗ - - -

Pan (2019) ✓ ✓ ✗ ✗

Lee, Liu and Ward (2019) ✓ ✓ ✗ ✗

Ramey, Klingler and Hollibaugh (2019) ✓ ✓ ✓ ✗

Kikuta (2020) ✓ ✓ ✗ ✗

Beiser-McGrath and Beiser-McGrath (2020) ✓ ✓ ✗ ✗

Baerg and Lowe (2020) ✗ - - -
Struthers, Hare and Bakker (2020) ✗ - - -
Torres (2020) ✗ - - -
Herzog and Mikhaylov (2020) ✗ - - -
Stuckatz (2020) ✗ - - -
Keele, Stevenson and Elwert (2020) ✗ - - -
de Benedictis-Kessner (2020) ✓ ✓ ✗ ✗

Radford (2021) ✓ ✓ ✓ ✗

Muchlinski et al. (2021) ✓ ✓ ✗ ✗

Blaydes et al. (2021) ✗ - - -
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Rice and Zorn (2021) ✗ - - -
Crosson (2021) ✗ - - -
Minhas et al. (2021) ✗ - - -
Christia et al. (2021) ✗ - - -
Funk, Paul and Philips (2021) ✓ ✓ ✓ ✓

Political Analysis

Applies Tunable Model Tuning
Article ML? HPs? Transparency Transparency

Imai and Khanna (2016) ✗ - - -
Kasy (2016) ✗ - - -
Samii, Paler and Daly (2016) ✓ ✓ ✗ ✗

Muchlinski et al. (2016) ✓ ✓ ✗ ✗

Ratkovic and Tingley (2017) ✓ ✗ - -
Cranmer and Desmarais (2017) ✓ ✓ ✗ ✗

Van Atteveldt et al. (2017) ✗ - - -
Rozenas (2017) ✗ - - -
Tausanovitch and Warshaw (2017) ✗ - - -
Rosenberg, Knuppe and Braumoeller (2017) ✗ - - -
Fafchamps and Labonne (2017) ✗ - - -
Grimmer, Messing and Westwood (2017) ✓ ✓ ✗ ✗

Greene and Cross (2017) ✓ ✓ ✓ ✗

De Vries, Schoonvelde and Schumacher (2018) ✓ ✓ ✓ ✓

Denny and Spirling (2018) ✓ ✓ ✓ ✓

Kim, Londregan and Ratkovic (2018) ✗ - - -
Blackwell (2018) ✗ - - -
Peterson and Spirling (2018) ✓ ✓ ✗ ✗

Temporão et al. (2018) ✓ ✓ ✓ ✗

Bansak (2019) ✓ ✓ ✓ ✗

Wang (2019) ✓ ✓ ✗ ✗

Neunhoeffer and Sternberg (2019) ✓ ✓ ✗ ✗

Kaufman, Kraft and Sen (2019) ✓ ✓ ✗ ✗

Greene, Park and Colaresi (2019) ✓ ✓ ✗ ✗

Goet (2019) ✓ ✓ ✓ ✓

Goplerud (2019) ✗ - - -

15



Stoetzer et al. (2019) ✗ - - -
Hainmueller, Mummolo and Xu (2019) ✗ - - -
De la Cuesta, Egami and Imai (2019) ✗ - - -
Minhas, Hoff and Ward (2019) ✗ - - -
Heuberger (2019) ✗ - - -
Mohanty and Shaffer (2019) ✗ - - -
Brandenberger (2019) ✗ - - -
Muchlinski et al. (2019) ✗ - - -
King and Nielsen (2019) ✗ - - -
Jerzak, King and Strezhnev (2019) ✗ - - -
Miller, Linder and Mebane (2020) ✓ ✓ ✗ ✗

Mozer et al. (2020) ✓ ✓ ✓ ✓

Ornstein (2020) ✓ ✓ ✓ ✓

Rheault and Cochrane (2020) ✓ ✓ ✓ ✗

Huang, Perry and Spirling (2020) ✗ - - -
Ziegler (2020) ✗ - - -
Bølstad (2020) ✗ - - -
Lu (2020) ✗ - - -
Ferrari (2020) ✗ - - -
Bussell (2020) ✗ - - -
Rodman (2020) ✓ ✓ ✗ ✗

Marble and Tyler (2020) ✗ - - -
Bustikova et al. (2020) ✓ ✓ ✗ ✗

Ghitza and Gelman (2020) ✗ - - -
Lall and Robinson (2020) ✓ ✓ ✓ ✗

Chang and Masterson (2020) ✓ ✓ ✓ ✗

Duch et al. (2020) ✓ ✓ ✗ ✗

Cohen and Warner (2021) ✓ ✓ ✗ ✗

Barberá et al. (2021) ✓ ✓ ✗ ✗

Acharya, Bansak and Hainmueller (2021) ✓ ✓ ✗ ✗

Di Cocco and Monechi (2021) ✓ ✓ ✓ ✓

Torres and Cantú (2021) ✓ ✓ ✓ ✓

Porter and Velez (N.d.) ✗ - - -
Ying, Montgomery and Stewart (2021) ✗ - - -
Kaufman and Klevs (2021) ✗ - - -
Erlich et al. (2021) ✓ ✓ ✗ ✓
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Blackwell and Olson (2021) ✓ ✓ ✗ ✗

Timoneda and Wibbels (2021) ✓ ✓ ✓ ✗

Kim and Kunisky (2021) ✗ - - -
Vannoni, Ash and Morelli (2021) ✗ - - -
Enamorado, López-Moctezuma and Ratkovic
(2021)

✗ - - -

Egami (2021) ✗ - - -
Fong and Tyler (2021) ✓ ✓ ✗ ✗

Sebők and Kacsuk (2021) ✓ ✓ ✗ ✗

American Political Science Review

Applies Tunable Model Tuning
Article ML? HPs? Transparency Transparency

Benoit et al. (2016) ✗ - - -
Rundlett and Svolik (2016) ✗ - - -
Imai, Lo and Olmsted (2016) ✗ - - -
King, Pan and Roberts (2017) ✗ - - -
Steinert-Threlkeld (2017) ✗ - - -
Blackwell and Glynn (2018) ✗ - - -
Hall and Thompson (2018) ✗ - - -
Pan and Chen (2018) ✓ ✓ ✓ ✓

Mueller and Rauh (2018) ✓ ✓ ✓ ✗

Blair et al. (2019) ✗ - - -
Dorsch and Maarek (2019) ✗ - - -
Hobbs and Lajevardi (2019) ✗ - - -
Mitts (2019) ✓ ✓ ✗ ✗

Enamorado, Fifield and Imai (2019) ✗ - - -
Barberá et al. (2019) ✓ ✓ ✓ ✓

Bisbee (2019) ✓ ✓ ✓ ✗

Katagiri and Min (2019) ✓ ✓ ✗ ✗

Cantú (2019) ✓ ✓ ✓ ✗

Park, Greene and Colaresi (2020) ✓ ✓ ✗ ✗

Magaloni and Rodriguez (2020) ✓ ✓ ✓ ✓

Badrinathan (2021) ✗ - - -
Manekin and Mitts (2021) ✗ - - -
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Goel et al. (2020) ✗ - - -
Challú, Seira and Simpser (2020) ✗ - - -
Nyrup and Bramwell (2020) ✗ - - -
Yoder (2020) ✓ ✓ ✓ ✗

Peyton (2020) ✓ ✓ ✓ ✗

Anastasopoulos and Bertelli (2020) ✓ ✓ ✗ ✗

Bøggild, Aarøe and Petersen (2021) ✓ ✓ ✗ ✗

Zubek, Dasgupta and Doyle (2021) ✓ ✓ ✗ ✓

Jacobs et al. (2021) ✓ ✓ ✗ ✗

Bansak, Bechtel and Margalit (2021) ✓ ✓ ✗ ✗

Knox and Lucas (2021) ✗ - - -
Ballard and Curry (2021) ✗ - - -
Wahman, Frantzeskakis and Yildirim (2021) ✓ ✓ ✓ ✗

Osnabrügge, Hobolt and Rodon (2021) ✓ ✓ ✗ ✗

18



C Details on the Machine Learning Models and Hyperparam-
eters in the Illustration

We reanalyze Muchlinski et al. (2021) to show how hyperparameter deception may lead
to wrong conclusions about machine learning models’ out-of-sample performance and, with it,
ultimately also model comparison. Muchlinski et al. (2021) introduce a Convolutional Neural
Network (CNN) to detect electoral violence with tweets. Studying three countries (Ghana,
the Philippines, and Venezuela), they compare the performance of their CNN model against a
baseline from a Support Vector Machine (SVM). Re-scraping Twitter11 based on the author’s
tweet IDs, we were able to access 58% of the Tweets in the Philippines, 74% of the Tweets in
Venezuela, and 78% of the Tweets in Ghana. We then pre-processed the Tweets as outlined in
their manuscript.

Our approach differs in three ways. First, in line with Kim (2014), who originally
proposes the CNN architecture in Muchlinski et al. (2021), we find that self-learned embeddings
underperform.12 Instead, we use word embeddings for English and Spanish that have been
trained on large corpora.13 Second, we expect that machine learning models are quite sensitive
in the context of medium-sized training sets. In addition to the SVM, we train a naive base
classifier and a random forest classifier. Hyperparameters for those baseline models are found
using grid search. Since the tuning of the CNN is more involved, we decided to implement a
random search strategy for its hyperparameters.

Finally, in the main part of the paper, we report the tuning based on one single split between
a 60% training set, a 20% validation set, and a 20% test set.14 For the appendix, we implement
cross-validation that avoids overfitting and generates a realistic evaluation of the generalization
error across different samples (Bischl et al., 2021; Neunhoeffer and Sternberg, 2019). We split
our data between a 60% training set, a 20% validation set, and a 20% test set—and repeat this
using different random splits three times for the resource-intensive CNN and five times for the
other machine learning models. We optimize the respective machine learning model and its
hyperparameters in each fold and then aggregate results across all folds.

For our performance benchmarking, we implemented five models. All models except
the Convolutional Neural Network (CNN) are based on the Python-library scikit-learn

(Pedregosa et al., 2011). For the CNN, we use keras (Chollet et al., 2015) as an underlying

11In December 2020.
12F1 scores never exceed 0.20 in any model. The rather small corpus allows observing only a limited number of word

collocations.
13English word embeddings: pretrained Google Word2Vec as in Gensim (Řehůřek and Sojka, 2010). Spanish word

embeddings: Word2Vec model trained on the Spanish Billion Words Corpus (Cardellino, 2019).
14Random seed = 20210101.
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framework. The model specifications, default settings, and search ranges for the hyperparameter
optimization are listed below. Additional hyperparameters not mentioned were automatically
set to the default values assigned by their package implementation. In each table, we report
the Tuning F1, which is calculated based on the validation set to allow for the choice of the
best hyperparameters. The out-of-sample F1 score is the estimate on the test set to approximate
the generalization error. Remember, knowing how well a specific hyperparameter setting
will generalize to out-of-sample data is impossible in advance. Occasionally, this results in
default hyperparameter values performing better on out-of-sample data than those selected after
optimization on the validation set.
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Naive Bayes is a probabilistic classifier based on Bayes’ theorem following a strong independence
assumption of tokens. We use the implementation sklearn.naive_bayes.MultinomialNB in
the Python-library scikit-learn (Pedregosa et al., 2011). In this implementation, the classifier
has only the hyperparameter alpha (Default value: 1.0). To tune this hyperparameter, we iterate
over a grid search using five-fold cross-validation based on the following value range:

• alpha: logarithmically spaced grid from 1 to 1𝑒 − 9 with 100 steps
This means that we test 100 different hyperparameter values.

Table 4: Best Naive Bayes Hyperparameters over five seeds optimized by F1

Seed alpha Tuning F1 Out-of-Sample F1

Ghana
20210101 10−9 0.512 0.538
20210102 10−9 0.457 0.522
20210103 10−9 0.452 0.415
20210104 10−9 0.444 0.632
20210105 10−9 0.456 0.468

The Philippines
20210101 10−9 0.482 0.390
20210102 10−9 0.449 0.421
20210103 10−9 0.465 0.324
20210104 10−9 0.448 0.474
20210105 10−9 0.462 0.526

Venezuela
20210101 0.002 0.331 0.308
20210102 0.002 0.321 0.358
20210103 0.004 0.347 0.344
20210104 0.019 0.290 0.480
20210105 0.004 0.340 0.333
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Random Forest is a classifier based on an ensemble of decision trees that are fitted on sub-
samples of the training dataset. It was introduced by Breiman (2001). We use the implementation
sklearn.ensemble.RandomForestClassifier in the Python-library scikit-learn (Pe-
dregosa et al., 2011). In this implementation, the classifier has a wide range of hyperparameters.
A selection of them are n_estimators (Default value: 100), criterion (Default value: gini),
max_depth (Default value: None), max_features (Default value: sqrt) and class_weight

(Default value: None). We tune these hyperparameters while keeping the implementations’
default values for the remainder. To optimize the hyperparameters of our RFs, we iterate over a
grid search using five-fold cross-validation based on the following range of values:

• n_estimators: 1, 5, 15, 50, 75, 100, 150, 200, 400, 1000
• max_depth: 1, 5, 25, 50, 75, 100, 150, 200, 400, 1000, None
• max_features: sqrt, log2, None
• class_weight: balanced, None

This means we test a total of 10 × 11 × 3 × 2 = 660 different permutations of hyperparameter
values.

Table 5: Best Random Forest Hyperparameters over five seeds optimized by F1

Seed n_estimators max_depth max_features class_weight Tuning F1 Out-of-Sample F1

Ghana
20210101 100 5 sqrt balanced 0.599 0.603
20210102 200 5 sqrt balanced 0.592 0.472
20210103 150 5 sqrt balanced 0.611 0.551
20210104 150 5 sqrt balanced 0.581 0.500
20210105 400 5 sqrt balanced 0.597 0.545

The Philippines
20210101 400 1 log2 balanced 0.462 0.160
20210102 1000 5 sqrt balanced 0.472 0.417
20210103 1000 5 log2 balanced 0.517 0.256
20210104 150 5 sqrt balanced 0.459 0.458
20210105 100 5 sqrt balanced 0.466 0.372

Venezuela
20210101 1000 5 sqrt balanced 0.486 0.479
20210102 150 5 sqrt balanced 0.505 0.283
20210103 400 5 sqrt balanced 0.469 0.516
20210104 400 5 sqrt balanced 0.486 0.491
20210105 200 5 sqrt balanced 0.480 0.420
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A Support Vector Machine is an algorithm that finds a hyperplane to maximize the separation
between different classes. The idea of support vectors was first introduced by Boser, Guyon
and Vapnik (1992). We use the implementation sklearn.svm.SVC in the Python-library
scikit-learn (Pedregosa et al., 2011). Again, this implementation offers a wide range
of hyperparameters. A selection of them are C (Default value: 1), kernel (Default value:
rbf), gamma (Default value: scale) and class_weight (Default value: None). We tune these
hyperparameters while keeping the implementations’ default values for the remainder. To
optimize them, we iterate over a grid search using five-fold cross-validation based on the
following range of values:

• C: exp{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
• kernel: linear, rbf, poly, sigmoid
• gamma: (applies only if the kernel is not linear, otherwise None) 0.0001, 0.001, 0.01, 0.1,

1, scale, auto
• class_weight: balanced, None

This means we test a total of 11 × 3 × 7 × 2 + 11 × 2 = 484 permutations of hyperparameter
values.

Table 6: Best Support Vector Machine Hyperparameters over five seeds optimized by F1

Seed C kernel gamma class_weight Tuning F1 Out-of-Sample F1

Ghana
20210101 20.086 rbf 0.01 balanced 0.674 0.727
20210102 2980.958 rbf 0.0001 balanced 0.666 0.597
20210103 2.718 sigmoid 0.1 balanced 0.657 0.595
20210104 148.413 rbf 0.001 balanced 0.671 0.560
20210105 20.086 sigmoid 0.01 balanced 0.684 0.640

The Philippines
20210101 2980.958 rbf log2 balanced 0.521 0.561
20210102 148.413 rbf sqrt None 0.551 0.424
20210103 2980.958 sigmoid log2 None 0.569 0.488
20210104 20.086 rbf sqrt balanced 0.547 0.542
20210105 20.086 rbf sqrt balanced 0.550 0.512

Venezuela
20210101 1.0 rbf 0.1 balanced 0.538 0.465
20210102 403.429 rbf 0.0001 balanced 0.541 0.446
20210103 1.0 rbf 0.01 balanced 0.558 0.500
20210104 148.413 rbf auto balanced 0.499 0.531
20210105 54.598 sigmoid 0.001 balanced 0.527 0.547
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A Convolutional Neural Network is a deep learning algorithm primarily used for the classifica-
tion of images but also text. Modern CNNs for image classification were introduced by Cun
et al. (1990), and we use the implementation offered by the Python framework keras (Chollet
et al., 2015). As this implementation offers a wide range of hyperparameters, we focus on
a selection of them. These are the number of filters (Default value: 200), kernel size

(Default value: 1), dropout probability (Default value: 0.5), L2 regularization (Default
value: 0.01) and learning rate (Default value: 0.001). We tune these hyperparameters while
keeping the implementations’ default values for the remainder. To optimize the hyperparameters
of our CNN, we iterate over 50 random combinations of parameters in each fold of a three-fold
cross-validation. These parameter combinations are based on the following range of values:

• filters: 150, 200, 250
• kernel size: [1,2,3], [2,3,4], [3,4,5]
• dropout: 0.5, 0.8
• L2 regularization: 0.001, 0.01, 0.1
• learning rate: 0.01, 0.001, 0.0001

This means we test 50 randomly chosen permutations of hyperparameters out of 3×3×2×3×3 =

162 possible permutations.

Table 7: Best Convolutional Neural Network Hyperparameters over three seeds optimized by AUC

Seed filters kernel size dropout L2 regularization learning rate Out-of-Sample F1

Ghana
20210101 150 [1,2,3] 0.5 0.01 0.001 0.679
20210102 150 [1,2,3] 0.5 0.001 0.0001 0.646
20210103 200 [3,4,5] 0.5 0.01 0.001 0.575

The Philippines
20210101 250 [2,3,4] 0.5 0.001 0.0001 0.444
20210102 200 [2,3,4] 0.5 0.001 0.0001 0.488
20210103 250 [2,3,4] 0.5 0.001 0.0001 0.304

Venezuela
20210101 250 [2,3,4] 0.5 0.001 0.0001 0.298
20210102 250 [2,3,4] 0.5 0.001 0.0001 0.385
20210103 200 [2,3,4] 0.5 0.001 0.0001 0.390
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