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ABSTRACT

This paper shows how to generate differentially private synthetic data using generative adversarial
nets (GANs). We bring together insights from three literatures. First, generating artificial copies
of original data is considered the gold standard in differential privacy, since any further analysis
of this kind of data does not spend any extra amount of the privacy budget. While this literature
has used machine learning to generate synthetic data on relatively trivial data sets, we show how to
handle even complex data structures. Second, GANs became prominent in learning and generating
the representation of visual and audio data. However, unlike in the context of synthetic visual and
audio data, synthetic micro-data requires to take account not only of the point estimate, but also has
to capture the diversity of the original data. We therefore apply, third, Bayesian GAN. We show how
BayesGAN can generate differentially private data when injecting the right amount of noise during
training with a Stochastic Gradient Langevin Dynamics sampler. In our paper, we are the first to
generate differentially private data using BayesGAN. So far, our experiments show that we generate
differentially private micro-data that are at least as useful for analysis and prediction as synthetic data
generated with other, so far considered methods. In addition, we also incorporate the privacy loss
parameters ε and δ into our framework which allows users to control the desired privacy loss of the
synthetic data.

Keywords Bayesian GAN · GAN ·Machine Learning · Synthetic Data · Differential Privacy

1 Introduction

In the era of Big Data, concerns about privacy and data protection are omni-present: Scientific studies often use
confidential data for their studies. Government agencies hold data about citizens that are equally sensitive. And
companies – think Facebook, Google or Twitter – are collecting data about consumer (online) behaviour at an
unprecedented level. But often, this data needs to be shared. To make studies replicable, scientists have to disclose code
and data. Companies and governments want to share data with those who have the technology and/or knowledge to
analyse it–be it other profit or non-profit organisations. Simple anonymisation techniques such as removing personally
identifiable information have long been shown to not being enough (see Sweeney, 1997). Original data simply cannot
be shared if high levels of data protection need to be guaranteed. In contrast, while any highly anonymised data might
be safe to share, it is questionable whether this data still contains enough information for analysis.

In statistics, the treatment of privacy-sensitive data has a long history under the name of “statistical disclosure control”
or “statistical disclosure limitation”. In this context, synthetic data is a is statistical disclosure limitation technique which
aims at releasing data to the public while protecting privacy-sensitive information. The main idea of synthetic micro-data
is to release micro-data, that is, data on individual records, synthesized based on the information in the original data.
The usage of synthetic data for statistical disclosure has a long history and was first proposed by Rubin (1993) and
Little (1993) in the spirit of multiple imputation. Nowadays, there exist a wide range of methods to produce synthetic
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micro-data (Reiter and Raghunathan, 2007; Reiter, 2005; Drechsler and Reiter, 2010; Kinney et al., 2011; Drechsler
and Reiter, 2011; Drechsler, 2011; Manrique-Vallier and Hu, 2018). However, existing synthetic data approaches often
rely on heuristic arguments about data safety – e.g. assumptions about the resources of an intruder (computing power,
time), or the availability of auxiliary information (see Dwork et al., 2017).

Over the last decade, a more rigorous disclosure protection standard – differential privacy (DP) – became increasingly
popular in academia, business and government alike. DP originated in cryptography and relies on mathematical terms
to provide strong privacy guarantees (Dwork et al., 2006). In short, the general idea of DP is the requirement of an
outcome of a randomized data analysis procedure (a simple statistic such as a mean, or the output of an algorithm such
as a data synthesizer) not to change much when this outcome is calculated from two neighbouring data sets that differ
by only one record (e.g. one individual). In other words, DP guarantees that the difference between any two adjacent
datasets does not disclose information about any individual observation.

In this paper, we show how to generate DP micro-data. We use a generative adversarial network (GAN) (Goodfellow
et al., 2014) in a Bayesian framework (BayesGAN) (Saatchi and Wilson, 2017). Sampling with Stochastic Gradient
Langevin Dynamics, we add noise to the gradients in line with the bounds formulated in Wang et al. (2015), thus adding
differential privacy to the BayesGAN (DP-BayesGAN).

Our solution offers a number of advantages over existing approaches to generate micro-data. First, it is easy to use as it
does not require complex hardware architectures, assumptions about distributions and functional forms, specification
of variables, feature matching or label smoothing. Second, DP-BayesGAN is capable to cover highly complex and
multi-modal data structures, and is less prone to suffer from mode collapse like a standard GAN would be. This is an
important aspect, given that most real-world data is highly complex and multi-modal. Third, a standard GAN can still
implicitly disclose privacy-sensitive information about the original data. Hitaj et al. (2017) show for instance that it is
possible to reconstruct original training samples from generated samples. Our proposed framework does not suffer from
this problem due to the incorporation of DP during the noise added to the gradient during optimization.

We therfore make three clear contributions. First, we show that BayesGAN can easily be made differentially private.
While there already exist work on differentially private GANs (Beaulieu-Jones et al., 2017; Triastcyn and Faltings,
2018; Xie et al., 2018), we are the first, to the best of our knowledge, who show that DP can be incorporated into the
Bayesian GAN framework. Second, we suggest a way to generate synthetic data at any user defined level of the privacy
parameter ε and δ. Third, we show the usefulness of Bayesian GANs in an application on the generation of differentially
private synthetic micro-data.

In the following section, we will first consider related work. We then take a closer look at the challenges when generating
differentially private data and proceed to explain how GANs can be a great means to generate synthetic copies from
original dataset. We then make bayesian GANs differentially private and present our approach for modelling the
privacy parameters ε and δ into the generator; thus allowing to ex-ante define the privacy budget that can be spent when
generating synthetic data. We provide an overview over the so far implemented experiments and offer concluding
remarks.

2 Related Work

Our paper joins insights from three related fields, that so far do not communicate to one another: The machine-
learning community around Generative Adversarial Nets, scholars from computer science and statistics interested
in Bayesian formulations of differential private data analysis and finally (applied) statisticians who care about the
creation of differentially private micro-data. While there have been first attempts to build bridges across respectively
two combinations of these sub-fields, we are the first to draw from all three of these literatures.

2.1 Synthetic Data as a Statistical Disclosure Limitation Technique

Synthetic data was introduced as a solution for statistical disclosure control. A statistical model based on the original
data generates “artificial”, or “fake” data. The intuition behind synthetic data is simple: some or all of the original
values in the data set should be replaced by values sampled from some appropriate probability distribution so that the
statistical properties of the original data set are preserved. Anybody who seeks to analyse the original data will have
access to the synthetic and use this data instead.

Synthetic data as a statistical disclosure limitation technique has been introduced almost three decades ago.1 Rubin
(1993) and Little (1993) first advanced synthetic data methods in the spirit of multiple imputation. After being
formulated as a proper framework (Raghunathan, 2003), a series of papers elaborated it further (Abowd and Lane, 2004;

1For overviews, see e.g. (Snoke et al., 2016; Drechsler, 2011).
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Abowd and Woodcock, 2004; Reiter and Raghunathan, 2007; Reiter, 2002; Drechsler and Reiter, 2010; Kinney et al.,
2010, 2011). Machine Learning techniques were used early on (Reiter, 2005) and increasingly also included more
complex approaches (Caiola and Reiter, 2010; Drechsler and Reiter, 2011).

Synthetic data for disclosure control has several important (theoretical) advantages as compared to the traditional
statistical disclosure limitation methods such as data swapping, aggregation or cell suppression. The results are
similar no matter whether an analyses is performed on the synthetic or original data. Also, synthetic data can preserve
confidentiality more easily, because a synthetic data record is not any respondent’s actual data record. Therefore,
the identification of individuals or privacy sensitive samples in general is difficult if not impossible. Finally, if the
estimation method is appropriate, the approach can allow the data users to draw valid and correct inferences for a variety
of estimands. An analyst does not need to know any particular assumptions about how the synthetic data were created.

2.2 Generative Adversarial Nets

Goodfellow et al. (2014) introduces Generative Adversarial Nets. Delivering promising results on prediction problems,
GANs became particularly prominent for their capacity to generate artificial, yet realistic looking images (Salimans
et al., 2016). Arjovsky et al. (2017) offer a theoretically informed framework that helps convergence and counter well
known fallacies–like mode collapse.

Recently, a number of attempts have been made to formulate Bayesian versions of GANs. Saatchi and Wilson (2017)
offer a complete Bayesian treatment of semi-supverised and un-supervised learning of GANs. Introducing hierarchical
implicit models, Tran et al. (2017) also propose a Bayesian formulation of GANs by placing a prior on the network
parameters θ. Wang et al. (2018) propose a destillation framework for GANs that makes storage of sampled MCMC
parameters more efficient.

2.3 Differential Privacy

Differential Privacy originated in a subfield of Computer Science concerned with cryptography (Dwork et al., 2006).
The concept has been gaining increasing attention beyond the borders of the subfield and has influenced applications in
various other areas.

2.3.1 DP and Bayes

Modelling parameters as distributions, the Bayesian perspective lends itself quite naturally to differential privacy. How-
ever, in the light of modern machine learning models with abundant parametarisation and large data sets, marginalising
posterior distributions with traditional MCMC techniques becomes increasingly challenging. The advent of Stochastic
Gradient methods were an important step to apply Bayesian approaches to modern machine learning models (Chen et al.,
2014; Welling and Teh, 2011). Building on these efforts, Wang et al. (2015) are the first to bring differential privacy
to Bayesian samplers. Li et al. (2017) continue in this line; they re-formulate more narrow bounds for step sizes and
thus achieve state-of-the-art training results while at the same time satisfying privacy concerns. Differentially private
stochastic gradient samplers were possible, because scholars adopted insights from machine learning and cryptography.
Applying these insights to Bayesian GANs and making them differentially private spills this knowledge back to the
machine learning literature.

2.3.2 DP and GANs

Differential privacy has also been considered in deep learning. Abadi et al. (2016) lay an important foundation for later
applications to GANs. They clip gradients and add gaussian noise at each step, and then calculate the overall suffered
privacy loss ε using moments accounting.

GANs have been used to address privacy concerns more broadly, for example to protect privacy in images (e.g. Tripathy
et al., 2017; Wu et al., 2018) or–in contrast–to attack privacy in the context of distributed learning setting (Hitaj et al.,
2017).

More recently, differential privacy as a more narrow definition of privacy has been applied to GANs, too. A number
of studies follows the framework of Abadi et al. (2016). (Beaulieu-Jones et al., 2017) generate differentially private
data from a medical trial. (Xie et al., 2018) also produce differentially private data: They establish differential privacy
by combining noise and weights clipping. The privacy loss is calculated through moments accounting. Triastcyn and
Faltings (2018) use GANs to explicitly generate micro-data. To hide sensitive data, they enforce DP on the penultimate
layer by clipping its L2 norm and adding Gaussian noise. They then evaluate the privacy parameter ε empirically on the
basis of pairwise comparisons between every possible pair of adjacent data sets.

3
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In contrast to the context free privacy solution differential privacy is offering, Huang et al. (2017) introduce GANs as
means to generate context aware privatisation schemes and mask data of interest on the basis of predefined variables of
interest. Building on this, Huang et al. (2018) reconceptualise the generator as “privatizer” and use the GAN framework
to find an optimal privacy mechanism.

Our model clearly relates to existing efforts. We add a Bayesian version of a GAN to the existing model landscape,
offering a natural way to differential privacy: Bayesian samplers have been shown to naturally follow requirements for
differential privacy, while at the same time being robust implementations that are easy to estimate.

3 Preliminaries

To fully understand our DP innovation, we introduce key concepts more formally.

3.1 Differential Privacy

Differential Privacy (DP) is a mathematical concept and strong privacy guarantee with roots in cryptography (Dwork,
2006; Dwork and Roth, 2013; Nissim et al., 2017).

(ε, δ)-DP is defined by Dwork and Roth (2013) as:

A randomized algorithmM with domain N|X | is (ε, δ)-differentially private if for all S ⊆ Range(M) and for all
x, y ∈ N|X | such that ||x− y||1 ≤ 12:

Pr[M(x) ∈ S] ≤ eεPr[M(y) ∈ S] + δ.

For δ = 0 this is called pure DP or ε-DP.

Nissim et al. (2017) put the definition of ε-DP into words: “Differential privacy mathematically guarantees that anyone
seeing the result of a differentially private analysis will essentially make the same inference about any individual’s
private information, whether or not that individual’s private information is included in the input to the analysis.”

ε is the so called privacy loss parameter. It quantifies how much information can be learnt about any individual included
in x, in a worst case scenario of an attacker with arbitrary side knowledge and arbitrary computational power. For small
values of ε the potential privacy loss for any observation in x is small. Larger values of ε mean that the potential privacy
loss is higher, with ε =∞ meaning that all the information about any individual can be learnt (i.e. by publishing the
original data set).

For our application we consider a popular relaxation of ε-DP, with δ > 0, so called (ε, δ)-DP. In the words of Dwork
and Roth (2013): “(ε, 0)-differential privacy ensures that, for every run of the mechanismM(x), the output observed is
(almost) equally likely to be observed on every neighboring database, simultaneously. In contrast (ε, δ)-differential
privacy says that for every pair of neighboring databases x, y, it is extremely unlikely that, ex post facto the observed
valueM(x) will be much more or much less likely to be generated when the database is x than when the database is y”
(18).

What makes DP so strong is that it does not depend on attacker capabilities–an attacker can have arbitrary side
knowledge and even arbitrary computational power. This is an important advantage of DP over other existing risk
measures in the Statistical Disclosure Limitation (SDL) literature, where usually assumptions about the attacker have to
be made.

3.2 Synthetic Data

The intuitive idea behind synthetic data is that an attacker could only learn about synthetic people and not real people or
any other type of observation for that matter. In general, there are two ways to generate synthetic data (Manrique-Vallier
and Hu, 2018). In sequential modelling, each variable at a time is modelled on the basis of the rest of the data and the
respective resulting models are used to generate synthetic data (Van Buuren et al., 2006). Reiter (2005) and Caiola and
Reiter (2010) are the first to use Classification and Regression Trees (CARTs) for this purpose. A second approach is to
model the data distribution jointly. Discrete data have been treated by Matthews et al. (2010) and Hu et al. (2014).

Yet this idea alone does not guarantee privacy in the framework of DP. Sophisticated attackers with lots of computational
power and arbitrary side knowledge (e.g. about who is in the original data set) might still be able to reconstruct real

2This means that x and y are two adjacent data sets that are differing only by one row.
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observations when being presented synthetic data. Only differentially private micro data can guarantee privacy against
attacks that do not require assumptions about attackers’ capabilities.

Once differentially private data is generated, it holds yet another important advantage–this time over differentially
private algorithms to analyse original data: Even when using an ε differentially private algorithm on original data, any
analysis will spend some part of the privacy budget. The more analyses are run, the more likely it is that original data
can be identified by an attacker. In contrast, synthetic data spends this privacy budget only once: when generating the
synthetic data. Analyses can be run an arbitrary number of times on synthetic data without increasing the disclosure
risk (Dwork and Roth, 2013; Nissim et al., 2017).

Differentally private data synthesis is a very recent area of research. Only six years ago, McClure and Reiter (2012)
note that: “There is a long way to go before differentially private synthetic data generation becomes feasible for highly
complex datasets.” For an excellent overview over the quick advances of differentially private data synthesis see Bowen
and Liu (2016).

When generating synthetic data, there needs to be a measure for the utility. Snoke et al. (2018) suggest to use the
propensity score mean-squared error pMSE to measure differences between original and synthetic data. For DP-
synthetic data the choice of ε is not trivial and a “social question”. The data owner has to decide on how much privacy
loss is accaptable. Yet, a data release is only useful if some of the statistical utility is preserved. Complicating matters is
that there is no straightforward interpretation of ε in the context of synthetic data.

3.3 Generative Adversarial Nets as a Means to Generate Complex Synthetic Data

The basic idea of a GAN is surprisingly intuitive. At its core, a GAN is a minimax game with two competing actors–a
discriminator (D) trying to tell real from synthetic samples and a generator (G) to produce realistic synthetic samples
from random noise.

We use the same illustrative example as Goodfellow et al. (2014) to make GANs (and the adjustments later on) more
accessible: "The generative model can be thought of as analogous to a team of counterfeiters, trying to produce fake
currency and use it without detection, while the discriminative model is analogous to the police, trying to detect the
counterfeit currency. Competition in this game drives both teams to improve their methods until the counterfeits are
indistiguishable from the genuine articles."

In GANs the team of counterfeiters, the generator, is a neural network which is trained to produce realistic synthetic
data examples from random noise. And the police, the discriminator, is a neural network with the goal to classify fake
and real data. The generator network is trained to be able to fool the discriminator network, and uses the feedback of the
discriminator to generate increasingly realistic “fake” data that should eventually be indistinguishable from the original
ones. At the same time, the discriminator is constantly adapting to the more and more improving generating abilities of
the generator. Thus, the “threshold” where the discriminator is fooled increases along with the faking capabilities of the
generator. This goes on until equilibrium is reached3.

Formally, this two-player minimax game can be written as:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
logD(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
(1)

where pdata(x) is the distribution of the real data, X is a sample from pdata(x). The generator network G(z) takes as
input z from p(z), where z is a random sample from a probability distribution p(z)4. Passing the noise z through G
then generates a sample of synthetic data which is then fed into the discriminator D(x). The discriminator takes as
input a set of labeled data, either real (x) from pdata(x) or generated (G(z)), and is trained to distinguish between real
data and synthetic data5. D is trained to maximize the probability of assigning the correct label to training examples and
samples from G(z). G is trained to minimize log(1−D(G(z))). Thus, the goal of the discriminator is to maximize
function V , whereas the goal of the generator is to minimize it.

The equilibrium point for the GANs is that the G should model the real data and D should output the probability of 0.5
as the generated data is same as the real data – that is, it is not sure if the new data coming from the generator is real or
fake with equal probability.6

3Interestingly, a GAN is therefore a dynamic system where the optimisation process is seeking not a minimum, but an equilibrium.
This is in stark contrast to standard deep learning systems, where the entire loss landscape is static.

4Usually GANs are set up to either sample from uniform or Gaussian distributions.
5This is a standard binary classification problem, and thus the standard binary cross-entropy loss with a sigmoid function at the

end can be used.
6Note the connection to the measure of general utility presented by Snoke et al. (2018). The explicit goal of a GAN is to maximize

general utility, and therefore a natural way to generate fully synthetic data.
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GANs have been shown to be capable of generating sophisticated synthetic copies from image and audio data
(complicated high-dimensional distributions from which it was difficult to sample from). In this paper we suggest
to make use of these powerful algorithms to produce synthetic micro-data. After all, any synthetic data approach to
differential privacy requires that the data generating algorithm is capable of generating high quality artificial data. Those
who analyse synthetic data can only detect relationships that a generating algorithm is actually capable of replicating
(Manrique-Vallier and Hu, 2018).

3.4 Bayesian GANs for Diverse Synthetic Data (Instead of Some Very Good Data Points)

One common problem of GANs, as described above, is so called mode collapse. Loosely speaking, this means that the
generator G focuses on few examples it knows will trick the discriminator. In the context of the illustrative example,
mode collapse means that the team of counterfeiters learns how to fake 20 Euro notes very well. Enthusiastic about the
initial success, they focus entirely on producing 20 Euro notes while not even attempting to fake other notes as well.

For fully synthetic data, mode collapse is particularly detrimental. It means that the collapsed generator G′ would
make “copies” of the most likely real data points in pdata(x) and that diversity in a sample would be lost. But even
without mode collapse, all inference about the original data distribution pdata(x) focusses on the most probable mode
of the Generator Likelihood only. GANs generate parameters θG and θD that represent one mode of a very likely
multi-modal distribution–but one mode only. This nuisance in the context of standard GANs becomes a real problem
when attempting to generate diverse synthetic data sets. To capture and copy from the full distribution pdata(x), the
GAN has to explore the complete posterior distribution of the generator G and the discriminator D. Saatchi and Wilson
(2017) recently proposed a Bayesian formulation of a GAN, a powerful framework for the full exploration of the
parameter posteriors.

The Bayesian GAN (BayesGAN) is a straightforward Bayesian formulation of the traditional GAN (or Maximum
Likelihood GAN). Instead of finding the most likely parameter vectors θG for the Generator and θD for the Discriminator,
the goal is to fully “represent the posterior distribution over the parameters” of both. The posteriors given in Saatchi
and Wilson (2017) are:

p(θG|z, θD) ∝

(
nG∏
i=1

D(G(zi; θG); θD

)
p(θG|αG) (2)

p(θD|z,X, θG) ∝
nD∏
i=1

D(xi; θD)×
nG∏
i=1

(1−D(G(zi; θG); θD))× p(θD|αD) (3)

To sample from the posteriors Saatchi and Wilson (2017) propose to use stochastic gradient hamiltonian monte carlo
(SGHMC) an sample from p(θG|z, θD) and p(θD|z,X, θG) at each training step.

In their application Saatchi and Wilson (2017) show that BayesGAN is able to recover highly complex multi modal
distributions on which the standard GAN approaches failed. This makes BayesGAN a promising framework to produce
diverse synthetic data. Another advantage of the Bayesian formulation of the GAN is that it is rather simple to make it
differentially private.

4 Differentially Private BayesGAN

To make BayesGAN DP we rely on a DP Stochastic Gradient MCMC sampler. Since only the Discriminator has access
to the training data it is sufficient to make the Discriminator DP (see also Xie et al., 2018; Triastcyn and Faltings, 2018).
We achieve this by injecting noise into the gradients during training of BayesGAN.

In the context of the illustrative example this means that the police is disturbed (eg. only has blurred vision) while
trying to tell real notes from fake ones. This will also reduce the capabilities of the team of counterfeiters as they cannot
learn more about the difference between real notes and their fake notes.

For the first application of a DP-BayesGAN we rely on the DP Stochastic Gradient Langevin Dynamics (SGLD) sampler.
Wang et al. (2015) prove that SGLD is “differentially private for free if the parameters are chosen appropriately”. In
particular, the amount of noise injected into the gradients during training is given by:

n ∼ N
(
0,

128NTL2

τε2
log(

2.5NT

τδ
) log(

2

δ
)η2t

)
(4)

6
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as long as, T ≥ ε2N
32τ log(2/δ) .

Where ε and δ are the privacy loss parameters for (ε, δ)-DP. N is the number of observations in the training data set. T
is the number of data passes during training7. L is the Lipschitz constant. τ is the number of training examples in a
minibatch and ηt is the step size at training iteration t. 8

This implies the following algorithm for DP-BayesGAN based on the BayesGAN algorithm by Saatchi and Wilson
(2017).

η is the learning rate, N the number of observations in the training data x, τ is the size of the minibatch, T is the
number of data passes. Like Saatchi and Wilson (2017) we take Jg and Jd simple MC samples for the generator and
discriminator respectively, and M SGLD/DP-SGLD samples for each simple MC sample;

for t = 1 : bNT/τc do
for number of MC iterations Jg do

Sample Jg noise samples {z(1), ..., z(Jg)} from noise prior p(z). Each z(i) has τ samples;
Update sample set representing p(θg|θd) by running SGLD updates for M iterations:

θj,mg ← θj,mg + ηt

 Jg∑
i=1

Jd∑
k=1

∂ log p(θg|z(i), θk,md )

∂θg

+ n;n ∼ N (0, 2ηtI )

;
Append θj,mg to sample set ;

end
for number of MC iterations Jd do

Sample minibatch of Jd noise samples {z(1), ..., z(Jg)} from noise prior p(z). Each z(i) has τ samples;
Sample minibatch of τ data samples x;
Update sample set representing p(θd|z, θg) by running DP-SGLD updates for M iterations:

θj,md ← θj,md +ηt

 Jd∑
i=1

Jg∑
k=1

∂ log p(θd|z(i),x, θk,mg )

∂θd

+n;n ∼ N
(
0,

128NTL2

τε2
log(

2.5NT

τδ
) log(

2

δ
)η2t I

)
;

Append θj,md to sample set ;
end

end
Algorithm 1: DP-BayesGAN

This means that before training the BayesGAN the researcher can set the desired amount of ε and δ. In the following
section we explore how different levels of ε affect the general utility of the synthetic micro-data generated with
DP-BayesGAN.

5 Experiments

With the following experiments we show three features of DP-BayesGAN. First, we show that the non-private
BayesGAN can compete with current state of the art models to produce synthetic data of highly complex data. Second,
we show that with introducing DP-BayesGAN the general utility of the data decreases as expected. And third, that the
disclosure risk indeed decreases for smaller values of ε in the DP-BayesGAN.

To assess the utility of the synthetic copies of the data set we use the general utility measure for synthetic data as
proposed by Snoke et al. (2018).

7Note that T is not the number of training iterations. The number of total training iterations is given by bNT/τc
8We note that narrower bounds for DP-SGLD are possible () but haven’t been explored for this first version of the paper. It is also

possible to derive a DP version of a stochastic gradient hybrid monte carlo (SGHMC) sampler which still has to be implemented as
well.

7
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5.1 A Complex Data Generating Process and Synthetic Copies

To assess the different synthetic copies we set up a complicated true data generating process (DGP). In particular, we rely
on the DGP proposed by Montgomery and Olivella (2018). They generate 500 observations of 40 explanatory variables
and one dependent variable. The explanatory variables include “symmetric and asymmetric variables, continuous and
categorical variables, and correlated and independent variables” and are generated as follows.

x1i ∼ Gamma(8, 2);

x2i ∼ Gamma(10, 1);

[x3 x4 x5]
′
i ∼MVN([2 3 6] , [1.5 0.5 3.3]

′
I3);

[x6 x7 x8]
′
i ∼Multinom(

[
1
3

1
3

1
3

]
, n = 1)

[x9 x10]
′
i ∼MVN

(
[−0.3 2] ,

[
1.5 0.685
0.685 5.5

])
[x11 . . . x40]

′
i ∼MVN(µ, I30)

With µ being a sample of 30 integers sampling with replacement from the integers 2 to 10.

For the complicated DGP the outcome variable is generated as:

y =

{
x1 − x21 − x22 − 15x1x2x10 + P3(x10)×

[
10 −5 0.9

]
) if x10 < 2.5

1750 + 350x10 if x10 ≥ 2.5

Where Pn is the polynomial-generating function.

We use this DGP to illustrate, that the BayesGAN is capable of capturing complex high dimensional data sets.

For the experiment we set up the generator network similar to the experiment in Saatchi and Wilson (2017) as a
two-layer neural network: 100-1000-41, fully connected, with ReLU activations. Consistently the discriminator network
is a two-layer neural network: 41-1000-1, fully connected, with ReLU activations. We place a N (0, I ) prior on the
weights of the BayesGAN.

To compare the BayesGAN to a state of the art synthetic data generator we rely on the conditional CART synthesizer as
detailed in Nowok et al. (2016) and implemented in the synthpop package for R. We use BayesGAN and synthpop
and generate ten synthetic copies of the original data set with each method. We then calculate the general utility of each
of the copies and report the average across the ten synthetic data sets in Figure 1.

Furthermore, Figure 2 shows that BayesGAN as well as synthpop are able to capture the complicated interactive
structure of the true DGP9.

Figure 1: General Utility of the synthetic data sets.

9Note that Var1 is the standardized y from the DGP above and Var11 is the standardized x10

8
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Figure 2: A closer look at the data.

5.2 DP Synthetic Data Sets

To generate the DP synthetic data sets we use the same BayesGAN setup as described above and additionally set ε and
δ such that additional noise is injected into the gradients of the discriminator during training.

As panels 3, 4 and 5 in Figure 1 show, the general utility of the data decreases with added noise. This means that the
logit model and the more flexible cart model can more easily distinguish real from synthetic data. This is what we
expect, the more privacy preserving we want our generated data to be.

5.3 Privacy Analysis

tbd

6 Conclusion

In this paper, we investigate the problem of differentially private synthetic microdata. While there exists a large number
of methodological approaches to produce synthetic microdata, these methods often rely on heuristic arguments instead
of rigorously quantifying the disclosure protection that is offered.

We offer a solution that allows for producing high quality synthetic microdata while at the same time fulfilling the strong
criteria of differential privacy. In particular, we employ Bayesian Generative Adversarial Networks to produce high
quality synthetic microdata that is also differentially private. Using a Stochastic Gradient Langevin Dynamics sampler,
we add noise to the gradients in line with the bounds formulated in Wang et al. (2015), thus generating DP synthetic
micro-data with DP-BayesGAN. We demonstrate the usefulness of our approach in an experiment on simulated data
with a complex data generating process. Our findings show that BayesGAN can compete with current state of the art
models to produce synthetic microdata. We also demonstrate that as expected, the general utility of the synthetic data
decreases with introducing the DP-BayesGAN.

Our paper improves existing work in several ways. First, we show that BayesGAN can easily be made differentially
private. While there already exist work on differentially private GANs (Beaulieu-Jones et al., 2017; Triastcyn and
Faltings, 2018; Xie et al., 2018), we are the first, to the best of our knowledge, who show that DP can be incorporated
into the BayesGAN framework. Second, we suggest a way to generate synthetic data at any user defined level of the
privacy loss parameters ε and δ. Third, we show the usefulness of BayesGAN in an application on the generation of
differentially private synthetic micro-data.

In upcoming work, we like to address the following points. First, we are aware that our approach so far does not directly
take into account categorical data (Manrique-Vallier and Hu, 2018). Second, we want to provide a deeper investigation
of the relationship between privacy level and the data utility. One way to do this would be to follow related work and
analyse this relationship using the output of images. Third, our approach is so far not capable to cover structural zeros.
These are entries in categorical data that are logically impossible (Manrique-Vallier and Hu, 2018). A similar issue to
be addressed are skip patterns (a battery of questions only asked if certain conditions are met).
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