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Abstract

Regression models with log-transformed dependent variables are widely used by social sci-

entists to investigate nonlinear relationships between variables. Unfortunately, this trans-

formation complicates the substantive interpretation of estimation results and often leads

to incomplete and sometimes even misleading interpretations. We focus on one valuable

but underused method, the presentation of quantities of interest such as expected values

or first differences on the original scale of the dependent variable. The procedure to derive

these quantities differs in seemingly minor but critical aspects from the well-known pro-

cedure based on standard linear models. To improve empirical practice, we explain the

underlying problem and develop guidelines that help researchers to derive meaningful in-

terpretations from regression results of models with log-transformed dependent variables.
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Regression models with log-transformed dependent variables are widely used by social

scientists to investigate nonlinear relationships between variables. Unfortunately, this transfor-

mation complicates the substantive interpretation of respective estimation results. In an effort

to improve empirical practice, we clarify one popular strategy for the substantive interpretation

of such regression results—the presentation of quantities of interest such as predicted values,

expected values, or first differences on the original scale of the dependent variable (King, Tomz

and Wittenberg, 2000). We show that calculating such quantities together with their associated

uncertainty is different from well-known procedures that work in the case of linear regres-

sion models without log-transformed dependent variables. Ignoring this difference can lead to

erroneous communication of regression results when the dependent variable is log-transformed.

The key point of confusion is this: A regression with a logged dependent variable estimates

𝐸 [ln(𝑦 |𝑋)]. For a substantive interpretation we want to calculate quantities of interest and their

associated uncertainty on the original scale of the dependent variable rather than the logged

scale. However, scholars cannot simply exponentiate expected values, standard errors, or upper

and lower bounds of the estimated confidence intervals on the logged scale in order to transform

them to the original scale. While ln(𝑦 |𝑋) is normally distributed, its transformation 𝑦 |𝑋 back

to the original scale is skewed. The consequence is that 𝑒𝐸 [ln(𝑦 |𝑋)] ≠ 𝑒ln(𝐸 [𝑦 |𝑋]) = 𝐸 [𝑦 |𝑋]. This

is well known among methodologists (e.g. Manning, 1998), but often neglected by substantive

scholars. To derive the desired quantities on the original scale together with the associated

uncertainty, scholars need to carefully apply appropriate transformation formulas and simulate

their respective confidence intervals correctly.

Popular methods textbooks also acknowledge this “retransformation problem” (e.g., Cameron

and Trivedi, 2022, Section 4.2.3; see also Cameron and Trivedi, 2005, Section 20.5.2). In this

letter, we add two important aspects. Cameron and Trivedi (2022) declare that the prediction

𝑒𝐸 (𝑙𝑛(𝑦 |𝑋)) is a “very poor” and incorrect prediction for 𝐸 [𝑦 |𝑋]. We show that 𝑒𝐸 (𝑙𝑛(𝑦 |𝑋)) is

indeed not a valid prediction for the mean on the original scale. However, it is still an interesting

quantity as it represents the conditional median of the log-normal distribution of 𝑦 |𝑋 . Further-

more, the solutions described in Cameron and Trivedi (2022) focus on the point estimate of the

conditional mean, but offer little guidance on the uncertainty that comes with those estimates.
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Here, we integrate solutions to the retransformation problem of point estimates with the simu-

lation algorithm by King, Tomz and Wittenberg (2000). In doing so, our solution also provides

accurate confidence intervals for 𝐸 [𝑦 |𝑋] and other quantities of interest on the original scale of

the dependent variable.

Even though the presentation of meaningful quantities of interest became best practice for

the interpretation of a wide range of statistical models, our review of current practice shows that

substantive scholars make little use of this approach when interpreting results from regression

models with logged dependent variables. We base this conclusion on a content analysis of all

research articles published in the American Political Science Review and American Journal of

Political Science between 2015 and 2020. In total, we identify 39 articles in which scholars

report at least one statistical model with a log-transformed dependent variable.

We identify three main styles of interpretation.1 First, an “old school” strategy that uses

the mere direction (positive/negative) and statistical significance of regression coefficients for

interpretation (in 6 out of 39 articles). Those articles provide no substantive interpretation of the

respective results and their uncertainty. Second, the most popular practice is the interpretation

of regression coefficients as “percent increase” of the dependent variable (used in 31 out of

39 articles). While this practice is not incorrect, we see an important shortcoming. Any

concrete interpretation of a “percent increase” does not provide us with an adequate sense of

the effect’s absolute magnitude. Furthermore, scholars rarely present the uncertainty associated

with a “percent increase”. Finally, there is an interpretation of regression results through

the presentation of quantities of interest such as predicted values, expected values, or first

differences (in 13 out of 39 articles). This is the one we recommend if done correctly and

effectively. Surprisingly, few authors provide uncertainty assessments for their quantities of

interest (only 3 of 13 quantities are presented with uncertainty estimates). Because there is

no reason why scholars should not be interested in communicating uncertainty on the original

scale of the dependent variable, we interpret this result as stemming from a lack of guidance in

how to correctly derive quantities of interest together with appropriate confidence intervals on

1The categories are not mutually exclusive. A list of all articles can be found in the supporting

information (SI.1).
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the original scale when the dependent variable is log-transformed.

In this letter, we provide guidance on how substantive scholars can improve their interpre-

tation of regression results when the dependent variable is logged. We show how to calculate

quantities of interest on the original scale even when the dependent variable is log-transformed,

and how to derive respective confidence intervals using simulations. Furthermore, we highlight

how the nonlinear nature of the log-transformation has important consequences for the calcula-

tion of first differences and how the presentation of first differences is especially useful for the

interpretation of estimation results from models that include interaction terms. We illustrate the

utility of our approach with a reanalysis of a recent study on executive appointment processes

in the US.

Calculating Quantities of Interest when the Dependent Variable is logged

To calculate quantities of interest on the original scale for models with logged dependent

variables, the workflow is to log-transform the dependent variable 𝑦, estimate the regression

model with ln(𝑦) as dependent variable, and then use estimation results to calculate quantities

of interest, such as 𝐸 [ln(𝑦)], although substantively rarely meaningful. To get substantively

meaningful quantities, one needs to transform those quantities back to the variable’s original

scale to get 𝐸 [𝑦]. While the transformation in the first step is fairly simple—we take the natural

log of each value of 𝑦—the back transformation requires careful thinking.

The back transformation is not straightforward because it maps ln(𝑦) back to 𝑦, which

is skewed log-normally distributed conditional on the model. For 𝑦 = 𝑒ln(𝑦) = 𝑒𝑋𝛽+𝜖 one

can show that 𝐸 [𝑦] = 𝐸 [𝑒ln(𝑦)] = 𝑒𝐸 [ln(𝑦)] · 𝐸 [𝑒𝜖 ] = 𝑒𝐸 [ln(𝑦)]+ 1
2 �̂�

2
> 𝑒𝐸 [ln(𝑦)] (e.g., Manning,

1998). Therefore, we cannot simply exponentiate 𝐸 [ln(𝑦)] to obtain 𝐸 [𝑦]. Table 1 provides

an overview of the correct transformation formulas: If we are interested in 𝐸 [𝑦], we need to

transform the estimates on the log-scale with 𝐸 [𝑦] = 𝑒𝐸 [ln(𝑦)]+ 1
2 �̂�

2 . But 𝑒𝐸 [ln(𝑦)] is an interesting

quantity as well, as this represents the median of the resulting log-normal distribution. Both the

mean and the median of 𝑦 can be interesting and reasonable quantities to present, but researchers

must be aware of the difference and should not confuse one with the other when interpreting

results. For unimodal, continuous skewed distributions, such as the log-normal distributed 𝑦,
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the median is often considered to be a more typical value than the mean (von Hippel, 2005).

To develop a deeper intuition and to illustrate the consequences of choosing the mean or

the median as a typical value in the context of linear models, we walk through a motivating

example introduced by Rainey (2017). Consider the following data generating process (DGP):

ln(Income) = 𝛽cons + 𝛽eduEducation + 𝜖, and 𝜖 ∼ 𝑁 (0, 𝜎2) (1)

The true values of the coefficients are given by 𝛽cons = 2.5, 𝛽edu = 0.1, and 𝜎2 = 1. The

challenge with this DGP is that the dependent variable is log-transformed. Scholars, however,

are usually interested in interpreting the results on the original scale of the dependent variable

because we are interested in the results in Dollars rather than ln(Dollar). Suppose that we are

interested in a typical income for a person with 20 years of education given our model. How

can we calculate such a typical value of income in Dollars, even if the dependent variable is

income in ln(Dollar)?

First, we need to choose whether we want to present the median or mean as our typical

value. Both can be interesting. To calculate a point estimate of the median income conditional

on our scenario of 20 years of education, we get Med(𝑌𝑐) = 𝑒2.5+0.1×20 = 𝑒4.5 ≈ 90.06. If we

are interested in a point estimate of the mean income conditional on 20 years of education, we

get 𝐸 (𝑌𝑐) = 𝑒2.5+0.1×20+ 1
2×1 = 𝑒5 ≈ 148.41. This shows that the mean and median are two very

distinct quantities.2

Simulating Confidence Intervals when the Dependent Variable is logged

Every estimation entails uncertainty. Transparent communication of this uncertainty is

fundamental to scientific practice. In this section we show how the simulation approach by

King, Tomz and Wittenberg (2000) can be used to get confidence intervals for both, the median

and mean of 𝑦 on the original scale. Figure 1 provides the algorithm to simulate confidence

2The sampling distributions of these estimators for �Med(𝑌𝑐) = 𝑒𝑋𝑐𝛽 and �𝐸 (𝑌𝑐) = 𝑒𝑋𝑐𝛽+ 1
2 �̂�

2 are

right skewed as well and thus the estimators are biased. Rainey (2017) describes this bias as

transformation induced bias.
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intervals for the mean when the dependent variable is not transformed (left column), the median

when the dependent variable is log-transformed (center column), and the mean when the

dependent variable is log-transformed (right column). Consider the workflow for models with

untransformed dependent variables first.

The procedure consists of four steps. In step 1 we approximate the distributions of the

estimated coefficients to account for estimation uncertainty.3 We start by drawing �̃�2 from

a inverse-gamma distribution, Inv-Γ( 𝑁−𝑘2 , �̂�
2 (𝑁−𝑘)

2 ) , where �̂�2 is the estimated variance, 𝑁

is the number of observations, and 𝑘 is the number of coefficients (𝛽). Next, we approxi-

mate the distribution of 𝛽 by drawing simulations 𝛽 from the multivariate normal distribution

𝑀𝑉𝑁 (𝛽, �̃�2(𝑋′𝑋)−1). In step 2 we choose our scenario of interest, i.e. we specify covariate

values 𝑋𝑐 that are held constant during simulation. In step 3 we calculate 𝑋𝑐𝛽, the linear

combination of the simulations 𝛽 and the chosen values of the covariates (𝑋𝑐) that define the

scenario of interest. This results in a simulated distribution �̃� (𝑌𝑐) of expected values of 𝑌

conditional on the specified scenario 𝑋𝑐. In step 4 we get a (1− 𝛼) × 100%-confidence interval

by summarizing the distribution with the 𝛼
2 and 1 − 𝛼

2 percentiles.

Now consider the center column in figure 1 where we outline the simulation procedure for

a confidence interval for the conditional median of a model with a logged dependent variable.

Using the example in equation 1, suppose that we are interested in the median income in Dollars

of a person with 20 years of education. Steps 1 to 3 do not differ from the standard procedure:

We draw simulations of the model coefficients (𝛽 and �̃�2), we set Education = 20, and compute

the linear combination of the simulated coefficients and the scenario of interest. This yields

�̃� (ln(𝑌𝑐)), a simulated distribution of ln(Income) conditional on 20 years of education. To get

confidence intervals for the median in Dollars, we exponentiate the distribution of �̃� (ln(𝑌𝑐)) as

shown in the transformation step in figure 1. Step 4 then is the same as before. Note that the

resulting distribution is skewed and the confidence intervals will not be symmetric around the

3The simulation approach follows an informal Bayesian logic. When we write that we simulate

the distribution of a quantity, then this means that we draw from an informal posterior distribution

of that quantity.
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DV = 𝑦
Simulate Mean (or Median)

DV = ln(𝑦)
Simulate Median M̃ed(𝑦)

DV = ln(𝑦)
Simulate Mean �̃� (𝑦)

Approximate the distributions
of the estimated coefficients

Approximate the distributions
of the estimated coefficients

Approximate the distributions
of the estimated coefficients

Step 1:

Step 2: Choose your sce-
nario of interest 𝑋𝑐

Choose your sce-
nario of interest 𝑋𝑐

Choose your sce-
nario of interest 𝑋𝑐

Calculate 𝑋𝑐𝛽 + 1
2 �̃�

2Calculate 𝑋𝑐𝛽Calculate 𝑋𝑐𝛽
to get �̃� (𝑌𝑐)

Step 3:

Transformation:

Calculate exp[𝑋𝑐𝛽]
to get M̃ed(𝑌𝑐)

Calculate exp[𝑋𝑐𝛽 + 1
2 �̃�

2]
to get 𝐸 (𝑌𝑐)

Use Percentiles
to get Confidence Intervals

Use Percentiles
to get Confidence Intervals

Use Percentiles
to get Confidence Intervals

Step 4:

Figure 1: Algorithm to simulate confidence intervals (King, Tomz and Wittenberg, 2000) when the
dependent variable is untransformed (left column), for the median when the dependent variable is logged
(center column) and for the mean when the dependent variable is logged (right column).

point estimate from the previous section.4

In the right column of figure 1, we show how to get confidence intervals for the mean,

e.g. the mean income in Dollars of a person with 20 years of education. The procedure mostly

remains the same with the exception of step 3 where we need to add 1
2 �̃�

2 to 𝑋𝑐𝛽. The derivation

of confidence intervals for first differences follows equivalently (see table 1 for an overview).5

4This is also the reason why taking the average of the simulations is not a good strategy to get a

point estimate. As the distribution is right skewed, continuous and unimodal, the mean of this

distribution will be biased upwards.
5We show that the confidence intervals calculated with this procedure have the correct coverage

through a Monte Carlo simulation we present in the supporting information (SI.2).
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Quantity of Interest Point Estimate Simulated Confidence Interval
Use 𝑄 𝛼

2 ,1−
𝛼
2
(·)

Variance 𝜎2 �̂�2 �̃�2 ∼ Inv-Γ( 𝑁−𝑘
2 , �̂�2 (𝑁−𝑘)

2 )
Regression Coefficients 𝛽 𝛽 𝛽 ∼ 𝑀𝑉𝑁 (𝛽, �̃�2(𝑋 ′𝑋)−1)
Expected value 𝐸 (𝑌𝑐) 𝑒𝑋𝑐𝛽+ 1

2 �̂�
2

𝑒𝑋𝑐𝛽+ 1
2 �̃�

2

Median value Med(𝑌𝑐) 𝑒𝑋𝑐𝛽 𝑒𝑋𝑐𝛽

First Difference 𝐸 (𝑌𝑐1) − 𝐸 (𝑌𝑐2) 𝑒𝑋𝑐1𝛽+
1
2 �̂�

2 − 𝑒𝑋𝑐2𝛽+
1
2 �̂�

2
𝑒𝑋𝑐1𝛽+

1
2 �̃�

2 − 𝑒𝑋𝑐2𝛽+
1
2 �̃�

2

First Difference Med(𝑌𝑐1) − Med(𝑌𝑐2) 𝑒𝑋𝑐1𝛽 − 𝑒𝑋𝑐2𝛽 𝑒𝑋𝑐1𝛽 − 𝑒𝑋𝑐2𝛽

Table 1: Transformation formulas for point estimates of common Quantities of Interest, and their
approximated distributions to construct correct confidence intervals by using 𝛼

2 and 1 − 𝛼
2 percentiles.

First-Differences and interaction terms with log-transformed dependent

variables

We point out two additional issues that arise when presenting quantities of interest on

the original scale from regression models with log-transformed dependent variables. First, the

magnitude of a first difference based on regression models with log-transformed dependent

variables depends on all covariates in the scenario, even those that are held constant. This is

different for regular linear regression models where the point estimate of the first difference

does not depend on the values of covariates that are held constant across scenarios.

Second, if an interaction term is present in the regression model, e.g. ln(𝑦) = 𝛽0 + 𝛽1𝐷 +

𝛽2𝑋 + 𝛽3(𝐷 × 𝑋) + 𝜖 , then the first difference 𝐸 (𝑦 |𝐷 = 1, 𝑋) − 𝐸 (𝑦 |𝐷 = 0, 𝑋) can increase

at higher levels of 𝑋 , even if 𝛽3 is negative (and vice versa). This is different for regular linear

models where the first difference is given by the marginal effect of 𝐷, i.e. 𝛽1+ 𝛽3𝑋 , and changes

as a linear function of 𝑋 at a rate of 𝛽3. Figure 2 demonstrates this notion.

For applied work, these peculiarities show the benefit of presenting quantities of interest

of regression models with log-transformed dependent variables on the original scale. At the

same time they alert researchers to choose and justify all values in their scenarios carefully. An

insensitive selection of any of a model’s covariate values may artificially inflate or deflate the

size of a first difference.
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Figure 2: Quantities of interest with an interaction effect. The data generating process follows ln(𝑌 ) =
𝛽0 + 𝛽1𝐷 + 𝛽2𝑋 + 𝛽3(𝐷 × 𝑋) + 𝜖 with 𝛽0 = 5, 𝛽1 = −5.5, 𝛽2 = 0.5, 𝛽3 = 0.4 and 𝜖 ∼ 𝑁 (0, 1.52). As 𝑋
increases, the first difference on the log-scale of 𝑌 decreases, but it increases on the original scale of 𝑌 .

Application—A reanalysis of Hollibaugh and Rothenberg (2018)

To demonstrate the utility of our approach, we reanalyse the results of a recently published

study by Hollibaugh and Rothenberg (2018). The study investigates factors that influence

executive appointment processes in the US context. The authors, among other things, study

the relation between agency dependence and appointee ideology. We are specifically interested

in one of their hypotheses: The higher the independence of the decision-maker in the targeted

agency, the higher the ideological divergence between the president and a nominee.6

To test this hypothesis, Hollibaugh and Rothenberg (2018) estimate linear models. Their

dependent variable is the natural log of the ideological divergence between a nominee and the

president (Nominee-President Divergence). The key independent variable is Agency Decision

Maker Independence. In support of the hypothesis, Hollibaugh and Rothenberg (2018) find that

Agency Decision Maker Independence is positively associated with the divergence between the

president and the nominee.

6This relates to hypotheses 6 in the original article. We refer interested readers to the original

article for more details on the theoretical arguments behind this hypothesis.
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Figure 3: Conditional mean and median values of nominee-president ideological divergence and first
difference between minimum and maximum values of the independent variable, conditional on two
different sets of covariate values.

To facilitate the interpretation of this effect, Hollibaugh and Rothenberg (2018) report

“expected values” of ideological divergence between the president and the nominee from low to

high agency decision-maker independence. All binary variables are set to zero, and following an

average case approach, all covariate values of continuous variables to their means. We replicate

the analysis following our guidelines and present both conditional mean and median values of

the dependent variable in figure 3.7 Our reanalysis reveals two things: First, researchers are

not always aware of the difference between conditional mean and conditional median values of

𝑦. What Hollibaugh and Rothenberg (2018) present as expected values are actually conditional

median values. Second, this difference is not trivial. Figure 3 demonstrates that the conditional

mean and the conditional median of 𝑦 are two very distinct quantities. The conditional mean

values are considerably larger than conditional median values.

Next, we illustrate how the selection of covariate values matters for first differences. The

right panel of figure 3 presents two first differences. Both estimates show a first difference of the

7Hollibaugh and Rothenberg (2018) z-transform the independent variables and transform simu-

lated values to the empirical percentile scale of the dependent variable.
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median between the minimum and maximum values of agency decision-maker independence,

but we alternated the values of the covariates that are held constant. One first difference is

based on an average case scenario (as in the left panel of figure 3), for the other scenario we set

all these covariates to either their minimum or maximum. This would not affect the magnitude

of the first difference in regular linear models, but it clearly affects the magnitude in this case

where the dependent variable is log-transformed. The first difference amounts to 0.075 for the

average case setting, but it roughly doubles to 0.156 if we fix the control variables at more

extreme values.

Conclusion

We have shown how to apply appropriate transformation formulas to estimated coefficients

of linear regression models with logged dependent variables in order derive various quantities of

interest on the original scale, and how to derive respective confidence intervals using simulations.

We conclude with a set of four recommendations that researchers should keep in mind when

improving the interpretation of such models.

First, it makes a difference whether conditional mean or median values are presented.

Unless there is a special theoretical interest in only one of both quantities, our advice is to

present both the conditional mean and the conditional median. Second, point estimates of

conditional mean and median values should be calculated directly based on the point estimates

of the regression model using appropriate transformation formulas (see table 1). The simulation

method in combination with the same formulas allows to derive respective confidence intervals.

Third, even values that are held constant across simulations, typically values of control variables,

are influential for quantities of interest on the original scale. These values have to be chosen

and communicated transparently. Typical strategies are to set those variables to their means,

their medians, or to observed values (Hanmer and Kalkan, 2013). Fourth, if the model includes

one or more interaction terms, researchers should refrain from interpreting marginal effects on

the logged scale. Larger marginal effects on the logged scale do not necessarily reflect larger

marginal effects on the original scale. In fact, the opposite may be true as we have shown. To
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interpret respective results, our advice is to always calculate first differences on the original

scale of the dependent variable.

Software

A software implementation of the proposed method is available as an open-source R

package, simloglm, at https://github.com/mneunhoe/simloglm. We provide a code example

for using the package, as well as calculating all mentioned quantities of interest and confidence

intervals by hand in R in the supporting information (SI.3).

References

Cameron, A. Colin and Pravin K. Trivedi. 2005. Microeconometrics: Methods and Applications.

New York: Cambridge University Press.

Cameron, A.C. and P.K. Trivedi. 2022. Microeconometrics Using Stata. Stata Press.

Hanmer, Michael J. and Kerem Ozan Kalkan. 2013. “Behind the Curve: Clarifying the

Best Approach to Calculating Predicted Probabilities and Marginal Effects from Limited

Dependent Variable Models.” American Journal of Political Science 57(1):263–277.

Hollibaugh, Gary E. and Lawrence S. Rothenberg. 2018. “The Who, When, and Where

of Executive Nominations: Integrating Agency Independence and Appointee Ideology.”

American Journal of Political Science 62(2):296–311.

King, Gary, Michael Tomz and Jason Wittenberg. 2000. “Making the Most of Statistical

Analyses: Improving Interpretation and Presentation.” American Journal of Political Science

44(2):347–361.

Manning, Willard G. 1998. “The logged dependent variable, heteroscedasticity, and the re-

transformation problem.” Journal of health economics 17(3):283–295.

Rainey, Carlisle. 2017. “Transformation-Induced bias: Unbiased Coefficients Do Not Imply

Unbiased Quantities of Interest.” Political Analysis 25(3):402–409.

von Hippel, Paul T. 2005. “Mean, Median, and Skew: Correcting a Textbook Rule.” Journal of

Statistics Education 13(2).

11

https://github.com/mneunhoe/simloglm


Supporting Information:

How to Improve the Substantive Interpretation of Regression Results when
the Dependent Variable is logged

Oliver Rittmann1, Marcel Neunhoeffer2,3, and Thomas Gschwend1.

1University of Mannheim.
2Boston University.
3LMU Munich.

1



SI.1 Literature Review

Article only direction? % increase? QoI? QoI-plot on original scale? QoI plot on log-scale?

Kriner and Reeves (2015) 7 ✓ First Difference ✓ 7

Dynes and Huber (2015) 7 ✓ First Difference∗ 7 7

Xu and Yao (2015) 7 ✓ 7 7 ✓
Rogowski (2016) 7 ✓ 7 7 7

Laitin and Ramachandran (2016) ✓ 7 7 7 7

Gulzar and Pasquale (2017) 7 ✓ 7 7 7

Hainmueller, Hangartner and Pietrantuono (2017) 7 ✓ 7 7 7

Nellis and Siddiqui (2018) ✓ 7 7 7 7

Hyytinen et al. (2018) 7 ✓ First Difference∗ 7 7

Grossman and Michelitch (2018) ✓ 7 7 7 7

Szakonyi (2018) 7 ✓ 7 7 7

Gordon and Simpson (2018) 7 ✓ 7 7 7

Guardado (2018) 7 ✓ First Difference∗ 7 ✓
Ch et al. (2018) 7 ✓ 7 7 ✓
Kim (2018) ✓ 7 7 7 7

Li (2018) 7 ✓ Predicted Values∗ ✓∗ 7

Fouka (2019) 7 ✓ 7 7 7

Lipscy (2015) 7 ✓ 7 7 7

Shepherd and You (2020) 7 ✓ First Difference∗ 7 7

Grumbach and Sahn (2020) 7 ✓ 7 7 7

Gulzar, Haas and Pasquale (2020) 7 ✓ First Difference∗ 7 7

Earle and Gehlbach (2015) 7 ✓ 7 7 7

Coleman and Mwangi (2015) 7 ✓ 7 7 7

Beazer and Woo (2016) 7 ✓ 7 7 7

Berry and Fowler (2016) 7 ✓ 7 7 7

Zhu (2017) 7 ✓ 7 7 7

Carnegie and Marinov (2017) 7 ✓ First Difference 7 7

Goldstein and You (2017) 7 ✓ 7 7 7

Fouirnaies and Hall (2018) 7 ✓ First Difference∗ 7 7

Fouirnaies (2018) 7 ✓ 7 7 7

Hollibaugh and Rothenberg (2018) 7 7 Expected Values ✓ 7

Beazer and Blake (2018) ✓ 7 7 7 7

Distelhorst and Locke (2018) 7 ✓ First Difference 7 ✓
Jiang (2018) 7 7 7 7 7

Paglayan (2019) 7 ✓ 7 7 7

Mohr et al. (2019) 7 ✓ First Difference∗ 7 ✓
Schultz and Mankin (2019) 7 ✓ First Difference∗ 7 7

Pond and Zafeiridou (2020) 7 ✓ 7 7 7

Jensen, Findley and Nielson (2020) ✓ 7 7 7 7

∗ without uncertainty

Table A1: Results of a content analysis of all research articles published in the American Political
Science Review and the American Journal of Political Science between 2015 and 2020.
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SI.2 Coverage Rate: Monte Carlo Evidence
We present Monte Carlo evidence to show that our approach to simulate confidence intervals

produces confidence intervals with a proper coverage rate. The Monte Carlo study is set up as
follows: We simulate data based on the data generating process described in the main paper,
and introduced by Rainey (2017). We restate the DGP here:

ln(Income) = 𝛽cons + 𝛽eduEducation + 𝜖, and 𝜖 ∼ 𝑁 (0, 𝜎2) (2)

The true values of the coefficients are given by 𝛽cons = 2.5, 𝛽edu = 0.1, and𝜎2 = 1. Further,
𝑁 = 10 with the set of observed values for Education ∈ {10, 11, 12, 13, 14, 16, 17, 18, 19, 20}.
We set up a Monte Carlo algorithm that generates data, fits a linear regression, and derives
the 95%-confidence intervals for a range of quantities of interest, including conditional median
values, conditional mean values, first differences of mean values, first differences of median
values, the ratio of median values, and the ratio of mean values. Precisely, the Monte Carlo
algorithm takes the following steps:

1. Draw 𝜖 ∼ 𝑁 (0, 𝜎2) and compute ln(Income) using equation 2 for all𝑁 = 10 observations.
2. Regress ln(Income) on Education via OLS.
3. Use the regression result to simulate the 95%-Confidence Intervals of

• Med(𝑦 |edu = 1)
• Med(𝑦 |edu = 20)
• 𝐸 (𝑦 |edu = 1)
• 𝐸 (𝑦 |edu = 20)
• Med(𝑦 |edu = 20) − Med(𝑦 |edu = 1)
• 𝐸 (𝑦 |edu = 20) − 𝐸 (𝑦 |edu = 1)
• Med(𝑦 |edu = 20)/Med(𝑦 |edu = 1)
• 𝐸 (𝑦 |edu = 20)/𝐸 (𝑦 |edu = 1)

following the simulation algorithm presented in the main text with 10,000 simulations.
4. Report whether the true quantity is within the 95%-Confidence Interval.

We repeat this simulation algorithm 10, 000 times. Table A2 reports the coverage rate of

the quantities of interest. As expected, the coverage rate of all quantities is close to 95%.

Estimand Coverage (10,000 Monte Carlo Repetitions)

Med(𝑦 |edu = 1) 0.9488
Med(𝑦 |edu = 20) 0.9500
𝐸 (𝑦 |edu = 1) 0.9484
𝐸 (𝑦 |edu = 20) 0.9448
Med(𝑦 |edu = 20) − Med(𝑦 |edu = 1) 0.9498
𝐸 (𝑦 |edu = 20) − 𝐸 (𝑦 |edu = 1) 0.9504
Med(𝑦 |edu = 20)/Med(𝑦 |edu = 1) 0.9497
𝐸 (𝑦 |edu = 20)/𝐸 (𝑦 |edu = 1) 0.9497

Table A2: Monte Carlo Results for the coverage rate of simulated 95%-Confidence Intervals.
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SI.3 A simple example with code

install_github("mneunhoe/simloglm")

library(simloglm)

# Estimating the model

df <- simloglm ::: example_df(n = 10)

m1 <- lm(log(income)~educ , data = df)

# Calculating QoI and simulating Confidence Intevals with

simloglm

set.seed (220609)

res1 <- simloglm(m1, scenario = list(educ = c(1, 20)))

# Summarize results for median

get_summary(res1 , which_qoi = "median")

# Summarize results for mean

get_summary(res1 , which_qoi = "mean")

# Or get first difference between the two scenarios

get_first_difference(res1 , which_qoi = "median")

# Calculating QoI and simulating Confidence Intervals by hand

# Function to sample from inverse gamma distribution

rinvgamma <- function (n,

shape ,
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rate = 1,

scale = 1 / rate)

{

if (missing(rate) && !missing(scale))

rate <- 1 / scale

1 / stats :: rgamma(n, shape , rate)

}

# Set up informal posterior of coefficients

# Set number of draws

nsim <- 1000

beta_hat <- coef(m1)

sigma_hat <- summary(m1)$sigma

X_prime_X <- summary(m1)$cov.unscaled

set.seed (220609)

# First sigma ^2

sigma2_tilde <- rinvgamma(

nsim ,

shape = m1$df.residual / 2,

rate = (sigma_hat ^ 2 * m1$df.residual) / 2

)

# Then the betas
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beta_tilde <- matrix(NA, nrow = nsim , ncol = length(beta_hat)

)

for (sim in 1:nsim) {

beta_tilde[sim , ] <-

MASS:: mvrnorm(1, beta_hat , X_prime_X * sigma2_tilde[sim

])

}

# Set your scenarios as a matrix (don ’t forget the intercept)

X_c <- rbind(c(1, 1),

c(1, 20))

# Calculate the linear predictor on the log scale

X_beta <- beta_tilde %*% t(X_c)

# Now transform back to original scale using the appropriate

formula

# Expected Values/Conditional Mean

# First add the draws of 1/2*sigma2_tilde to each column

X_beta_sigma_tilde <- apply(X_beta , 2, function(x) x + 1/2*

sigma2_tilde)

# Transform

E_Y_c <- exp(X_beta_sigma_tilde)

# Summarize to get Confidence Intervals

CI_E_Y_c <- apply(E_Y_c, 2, quantile , c(0.025 , 0.975))
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# Use beta_hat and sigma_hat for point estimates

X_beta_hat <- beta_hat %*% t(X_c)

X_beta_sigma_hat <- X_beta_hat + 1/2*sigma_hat^2

# Point estimate

E_Y_c_hat <- exp(X_beta_sigma_hat)

# Conditional Median

# First add the draws of 1/2*sigma2_tilde to each column

# Transform

Med_Y_c <- exp(X_beta)

# Summarize to get Confidence Intervals

CI_Med_Y_c <- apply(Med_Y_c, 2, quantile , c(0.025 , 0.975))

# Point estimate

Med_Y_c_hat <- exp(X_beta_hat)

# Or get first difference of the medians between the two

scenarios

# Point estimate

fd_Med_hat <- Med_Y_c_hat[,2] - Med_Y_c_hat[,1]

# Confidence Intevals

fd_Med <- Med_Y_c[,2] - Med_Y_c[,1]
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CI_fd_Med <- quantile(fd_Med , c(0.025 , 0.975))
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SI.4 A Reanalysis of Shepherd and You (2020)

We present here a second reanalysis of a prominently published article to show that

correctly interpreting effects in regression models is substantively important. Shepherd and

You (2020) study the influence of career paths of congressional staffers on the legislative

output. In particular they are interested in what happens when staffers later become lobbyists.

Shepherd and You (2020, 270) conclude: “Using comprehensive data on congressional staffers,

we find that employing staffers who later become lobbyists is associated with higher legislative

productivity for members of Congress, especially in staffers final terms in Congress.”

They run several OLS models with transformed dependent variables.8 One of the three

dependent variables to measure legislative productivity is the legislative effectiveness score

(LES) introduced by Volden and Wiseman (2014, 2018). We focus on the LES since this is the

dependent variable that Shepherd and You (2020) offer a substantive interpretation for. With the

provided replication data we can reproduce the results in the original regression table exactly.

Yet, following our guidelines the substantive results using quantities of interest differ. Again,

this difference is due to an erroneous transformation of the transformed quantities of interest

back to the original scale.

Shepherd and You (2020, Corrigendum 1) report the following substantive effect: “Given

that our outcome variables are log-transformed, a one standard deviation increase in the num-

ber of future lobbyist staff (0.34) is associated with 1.8% increase in a members Legislative

Effectiveness Score (LES) (exp(log(1.7) + 0.0317 × 0.34) − 1.7 = 0.0184), if we evaluate the

effect [...] at the mean level of LES.” Where 1.7 is the mean of the LES in their sample, 0.0317

is the coefficient for the number of future lobbyists in their model and 0.34 is supposed to be a

8The log-transformation of the variables is motivated by “Given that all outcome variables have

highly skewed distributions, we use log-transformed variables in the estimation” (Shepherd

and You, 2020, 276). Unfortunately, this commonly used motivation is wrong, the decision of

transforming the dependent variable should only be based on the distribution of 𝑌 |𝑋 , i.e. the

error distribution. Moreover, since all of the variables contain 0s, they decide to calculate the

log as log(𝑥 + 1). This has to be taken into account when transforming the quantities of interest

back to the original scale.
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residualized standard deviation, as proposed in Mummolo and Peterson (2018), in the number

of future lobbyist staff.

According to our replication analysis the mean of LES is at 1 and the residualized standard

deviation of the number of future lobbyists ≈ 0.74. However, even correcting those two

values would still yield an erroneous transformation. Note, that this interpretation neglects the

multiplicative nature of a model with a log-transformed dependent variable, the substantive

effect depends on a scenario for all other independent variables.9.

Using the results from the model in Shepherd and You (2020, 276, Table 2, Model 4) and

following the steps outlined in section 3 we get that a one standard deviation increase in the

number of future lobbyist staff (0.74) is associated with a 5.6% increase in a member’s LES for

an average member of Congress,10 with a 95% Confidence Interval from 2.8% to 8.3%. Thus,

on average, the effect is more than 3 times as large as reported by Shepherd and You (2020).

Using the 95% Confidence Interval to test the classical two-sided hypothesis whether a

one standard deviation increase in future lobbyist staff has an effect (different from 0) on a

member’s LES, we can reject the Null hypothesis of no effect. This highlights the importance to

communicate the uncertainty surrounding quantities of interest and not only relying on a point

estimate.

In their paper Shepherd and You (2020, 273) formulate their hypothesis as a directed hy-

pothesis: “Hiring a future revolving-door staffer should be associated with increases in member

legislative effectiveness and bill sponsorship activity.” Another advantage of the simulation

approach is that we can easily calculate the probability that the % Change in Legislative Effec-

tiveness Score that is associated with a one standard deviation increase in future lobbyist staff is

greater than 0, a test that is better suited to the directed hypothesis. With our simulation results

9The approach of Shepherd and You (2020) would give the same results only if all of the other

coefficients were exactly 0 or if the intercept is 0 and they chose a scenario where all other

covariates are set to 0.
10Note that this observation does not exist. Other approaches for scenarios based on actual

observations have been proposed (e.g. Hanmer and Kalkan, 2013). Using our R package

simloglm it is easy to also calculate the percent increase using the observed value approach.
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we find that this is the case in all of our 1, 000 simulations, thus, yielding a p-value of < 1
1000

for the one-sided hypothesis test.

Figure A1 displays the correctly calculated results for the scenarios outlined in Shepherd

and You (2020). Since the sampling distribution of quantities of interest on the original scale

is not necessarily symmetric we advise applied scholars to communicate as much information

as possible on the shape of the distribution. This can be achieved, for instance, by reporting

multiple confidence intervals.

First Difference (Mean) in Legislative Effectiveness Scores (LES)

0.01 0.080.02 0.03 0.04 0.05 0.06 0.07

(A) |

| Point Estimate 80% CI 95% CI 99% CI

First Difference (Median) in Legislative Effectiveness Scores (LES)

0.01 0.080.02 0.03 0.04 0.05 0.06 0.07

(B) |

| Point Estimate 80% CI 95% CI 99% CI

% Change Legislative Effectiveness Scores (LES)

1 102 4 6 8

(C) |

Figure A1: Correct Quantities of Interest based on the results in Shepherd and You (2020). Results for
the effect of a one (residualized) standard deviation increase (0.74) in the number of future lobbyists on
the Legislative Effectiveness Score (LES), where all other covariate values are set to their means. Panel
(A) shows the First-Difference between Expected Values. Panel (B) shows the First-Difference between
Medians. Panel (C) shows the % Change.
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